Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Research article

Synonymous mutations that regulate translation speed might play a non-negligible role in liver cancer development

Authors: Qun Li, Jian Li, Chun-peng Yu, Shuai Chang, Ling-ling Xie, Song Wang

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Synonymous mutations do not change the protein sequences. Automatically, they have been regarded as neutral events and are ignored in the mutation-based cancer studies. However, synonymous mutations will change the codon optimality, resulting in altered translational velocity.

Methods

We fully utilized the transcriptome and translatome of liver cancer and normal tissue from ten patients. We profiled the mutation spectrum and examined the effect of synonymous mutations on translational velocity.

Results

Synonymous mutations that increase the codon optimality significantly enhanced the translational velocity, and were enriched in oncogenes. Meanwhile, synonymous mutations decreasing codon optimality slowed down translation, and were enriched in tumor suppressor genes. These synonymous mutations significantly contributed to the translational changes in tumor samples compared to normal samples.

Conclusions

Synonymous mutations might play a role in liver cancer development by altering codon optimality and translational velocity. Synonymous mutations should no longer be ignored in the genome-wide studies.
Literature
5.
go back to reference Chu D, Wei L. The chloroplast and mitochondrial C-to-U RNA editing in Arabidopsis thaliana shows signals of adaptation. Plant Direct. 2019;3:e00169.PubMedPubMedCentral Chu D, Wei L. The chloroplast and mitochondrial C-to-U RNA editing in Arabidopsis thaliana shows signals of adaptation. Plant Direct. 2019;3:e00169.PubMedPubMedCentral
8.
go back to reference Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, et al. Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Inf Secur. 2020;81:e24–7. Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, et al. Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Inf Secur. 2020;81:e24–7.
14.
go back to reference Wei L. Selection on synonymous mutations revealed by 1135 genomes of Arabidopsis thaliana. Evol Bioinformatics Online. 2020;16:1176934320916794. Wei L. Selection on synonymous mutations revealed by 1135 genomes of Arabidopsis thaliana. Evol Bioinformatics Online. 2020;16:1176934320916794.
38.
go back to reference Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6:80–92, 2, doi: https://doi.org/10.4161/fly.19695. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6:80–92, 2, doi: https://​doi.​org/​10.​4161/​fly.​19695.
41.
go back to reference Wang Y, Gai Y, Li Y, Li C, Li Z, Wang X. SARS-CoV-2 has the advantage of competing the iMet-tRNAs with human hosts to allow efficient translation. Mol Gen Genomics. 2021;296:113–8. Wang Y, Gai Y, Li Y, Li C, Li Z, Wang X. SARS-CoV-2 has the advantage of competing the iMet-tRNAs with human hosts to allow efficient translation. Mol Gen Genomics. 2021;296:113–8.
46.
go back to reference Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, Mark D, et al. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. Proc Natl Acad Sci U S A. 2021;118(4):e2010612118. Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, Mark D, et al. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. Proc Natl Acad Sci U S A. 2021;118(4):e2010612118.
Metadata
Title
Synonymous mutations that regulate translation speed might play a non-negligible role in liver cancer development
Authors
Qun Li
Jian Li
Chun-peng Yu
Shuai Chang
Ling-ling Xie
Song Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08131-w

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine