Skip to main content
Top
Published in: BMC Cancer 1/2020

01-12-2020 | Kidney Cancer | Research article

Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma

Authors: Jiangqiao Zhou, Tianyu Wang, Tao Qiu, Zhongbao Chen, Xiaoxiong Ma, Long Zhang, Jilin Zou

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer. Ubiquitin-specific protease (USP)44 has been reported to be involved in various cancers. We investigated the function, role and molecular mechanism of USP44 in ccRCC.

Methods

Data obtained from the Cancer Genome Atlas Data Portal and Gene Expression Omnibus database were analyzed to uncover the clinical relevance of USP44 expression and tumor development. USP44 function in the proliferation and migration of tumor cells was assessed by cellular and molecular analyses using ccRCC lines (786-O cells and Caki-1 cells).

Results

USP44 showed low expression in ccRCC cancer tissues compared with that in normal tissue. USP44 expression was negatively correlated with tumor stage, tumor grade, and patient survival. USP44 overexpression inhibited the proliferation and migration of 786-O cells and Caki-1 cells significantly. USP44 overexpression also prohibited cell proliferation by upregulating expression of P21, downregulating cyclin-D1 expression, and inhibiting cell migration by downregulating expression of matrix metalloproteinase (MMP)2 and MMP9. USP44 knockdown enhanced the proliferation and migration of 786-O cells and Caki-1 cells. USP44 function in inhibiting the proliferation and migration of 786-O cells and Caki-1 cells was associated with phosphorylation of Jun N-terminal kinase (JNK).

Conclusion

USP44 may be a marker in predicting ccRCC progression. Inhibition by USP44 of the proliferation and migration of 786-O cells and Caki-1 cells is dependent upon the JNK pathway.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, Lam T, Marconi L, Merseburger AS, Mulders P, Powles T, Staehler M, Volpe A, Bex A. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67:913–24.CrossRef Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, Lam T, Marconi L, Merseburger AS, Mulders P, Powles T, Staehler M, Volpe A, Bex A. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67:913–24.CrossRef
3.
go back to reference Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis AH, Bjarnason GA, Jewett MA, Evans A, Al-Haddad S, Siu KM, Yousef GM. Lactate dehydrogenase a is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 2014;13:101.CrossRef Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis AH, Bjarnason GA, Jewett MA, Evans A, Al-Haddad S, Siu KM, Yousef GM. Lactate dehydrogenase a is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 2014;13:101.CrossRef
4.
go back to reference Garje R, An JJ, Sanchez K, Greco A, Stolwijk J, Devor E, Rustum Y, Zakharia Y. Current landscape and the potential role of hypoxia-inducible factors and selenium in clear cell renal cell carcinoma treatment. Int J Mol Sci. 2018;19:E3834.CrossRef Garje R, An JJ, Sanchez K, Greco A, Stolwijk J, Devor E, Rustum Y, Zakharia Y. Current landscape and the potential role of hypoxia-inducible factors and selenium in clear cell renal cell carcinoma treatment. Int J Mol Sci. 2018;19:E3834.CrossRef
5.
go back to reference Lorente D, Trilla E, Meseguer A, Arevalo J, Nemours S, Planas J, Placer J, Celma A, Salvador C, Regis L, Schwartzmann I, Morote J. The role of STAT3 protein as a prognostic factor in the clear cell renal carcinoma. Systematic review. Actas Urol Esp. 2019;43:118–23.CrossRef Lorente D, Trilla E, Meseguer A, Arevalo J, Nemours S, Planas J, Placer J, Celma A, Salvador C, Regis L, Schwartzmann I, Morote J. The role of STAT3 protein as a prognostic factor in the clear cell renal carcinoma. Systematic review. Actas Urol Esp. 2019;43:118–23.CrossRef
6.
go back to reference Kumar A, Kumari N, Gupta V, Prasad R. Renal cell carcinoma: molecular aspects. Indian J Clin Biochem. 2018;33:246–54.CrossRef Kumar A, Kumari N, Gupta V, Prasad R. Renal cell carcinoma: molecular aspects. Indian J Clin Biochem. 2018;33:246–54.CrossRef
7.
go back to reference Bernardes VF, Odell EW, Gomez RS, Gomes CC. DNA aneuploidy in malignant salivary gland neoplasms is independent of USP44 protein expression. Braz Dent J. 2017;28:148–51.CrossRef Bernardes VF, Odell EW, Gomez RS, Gomes CC. DNA aneuploidy in malignant salivary gland neoplasms is independent of USP44 protein expression. Braz Dent J. 2017;28:148–51.CrossRef
8.
go back to reference Suresh B, Ramakrishna S, Lee HJ, Choi JH, Kim JY, Ahn WS, Baek KH. K48- and K63-linked polyubiquitination of deubiquitinating enzyme USP44. Cell Biol Int. 2010;34:799–808.CrossRef Suresh B, Ramakrishna S, Lee HJ, Choi JH, Kim JY, Ahn WS, Baek KH. K48- and K63-linked polyubiquitination of deubiquitinating enzyme USP44. Cell Biol Int. 2010;34:799–808.CrossRef
9.
go back to reference Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest. 2012;122:4362–74.CrossRef Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest. 2012;122:4362–74.CrossRef
10.
go back to reference Sloane MA, Wong JW, Perera D, Nunez AC, Pimanda JE, Hawkins NJ, Sieber OM, Bourke MJ, Hesson LB, Ward RL. Epigenetic inactivation of the candidate tumor suppressor USP44 is a frequent and early event in colorectal neoplasia. Epigenetics. 2014;9:1092–100.CrossRef Sloane MA, Wong JW, Perera D, Nunez AC, Pimanda JE, Hawkins NJ, Sieber OM, Bourke MJ, Hesson LB, Ward RL. Epigenetic inactivation of the candidate tumor suppressor USP44 is a frequent and early event in colorectal neoplasia. Epigenetics. 2014;9:1092–100.CrossRef
11.
go back to reference Zhang Y, van Deursen J, Galardy PJ. Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One. 2011;6:e23389.CrossRef Zhang Y, van Deursen J, Galardy PJ. Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One. 2011;6:e23389.CrossRef
12.
go back to reference Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W, Hu G. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231–46.PubMedPubMedCentral Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W, Hu G. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231–46.PubMedPubMedCentral
13.
go back to reference Jiangqiao Z, Tao Q, Zhongbao C, Xiaoxiong M, Long Z, Jilin Z, Tianyu W. Anti-silencing function 1B histone chaperone promotes cell proliferation and migration via activation of the AKT pathway in clear cell renal cell carcinoma. Biochem Biophys Res Commun. 2019;511:165–72.CrossRef Jiangqiao Z, Tao Q, Zhongbao C, Xiaoxiong M, Long Z, Jilin Z, Tianyu W. Anti-silencing function 1B histone chaperone promotes cell proliferation and migration via activation of the AKT pathway in clear cell renal cell carcinoma. Biochem Biophys Res Commun. 2019;511:165–72.CrossRef
14.
go back to reference Williams RD, Elliott AY, Stein N, Fraley EE. In vitro cultivation of human renal cell cancer. II. Characterization of cell lines. In Vitro. 1978;14:779–86.CrossRef Williams RD, Elliott AY, Stein N, Fraley EE. In vitro cultivation of human renal cell cancer. II. Characterization of cell lines. In Vitro. 1978;14:779–86.CrossRef
15.
go back to reference Fogh J. Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors. Natl Cancer Inst Monogr. 1978. p. 5–9. Fogh J. Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors. Natl Cancer Inst Monogr. 1978. p. 5–9.
16.
go back to reference Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 2016;94:1313–26.CrossRef Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 2016;94:1313–26.CrossRef
17.
go back to reference Parveen A, Akash MS, Rehman K, Kyunn WW. Dual role of p21 in the progression of cancer and its treatment. Crit Rev Eukaryot Gene Expr. 2016;26:49–62.CrossRef Parveen A, Akash MS, Rehman K, Kyunn WW. Dual role of p21 in the progression of cancer and its treatment. Crit Rev Eukaryot Gene Expr. 2016;26:49–62.CrossRef
19.
go back to reference Shamloo B, Usluer S. p21 in cancer research. Cancers (Basel). 2019;11:E1178.CrossRef Shamloo B, Usluer S. p21 in cancer research. Cancers (Basel). 2019;11:E1178.CrossRef
20.
go back to reference Yadav L, Puri N, Rastogi V, Satpute P, Ahmad R, Kaur G. Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev. 2014;15:1085–91.CrossRef Yadav L, Puri N, Rastogi V, Satpute P, Ahmad R, Kaur G. Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev. 2014;15:1085–91.CrossRef
21.
go back to reference Lee YM, Kim JM, Lee HJ, Seong IO, Kim KH. Immunohistochemical expression of CD44, matrix metalloproteinase2 and matrix metalloproteinase9 in renal cell carcinomas. Urol Oncol. 2019;37:742–8.CrossRef Lee YM, Kim JM, Lee HJ, Seong IO, Kim KH. Immunohistochemical expression of CD44, matrix metalloproteinase2 and matrix metalloproteinase9 in renal cell carcinomas. Urol Oncol. 2019;37:742–8.CrossRef
22.
go back to reference Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019;39:2223–40.CrossRef Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019;39:2223–40.CrossRef
23.
go back to reference Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.CrossRef Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.CrossRef
24.
go back to reference Holland AJ, Cleveland DW. The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J Clin Invest. 2012;122:4325–8.CrossRef Holland AJ, Cleveland DW. The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J Clin Invest. 2012;122:4325–8.CrossRef
25.
go back to reference Liu T, Sun B, Zhao X, Li Y, Zhao X, Liu Y, Yao Z, Gu Q, Dong X, Shao B, Lin X, Liu F, An J. USP44+ Cancer stem cell subclones contribute to breast cancer aggressiveness by promoting vasculogenic mimicry. Mol Cancer Ther. 2015;14:2121–31.CrossRef Liu T, Sun B, Zhao X, Li Y, Zhao X, Liu Y, Yao Z, Gu Q, Dong X, Shao B, Lin X, Liu F, An J. USP44+ Cancer stem cell subclones contribute to breast cancer aggressiveness by promoting vasculogenic mimicry. Mol Cancer Ther. 2015;14:2121–31.CrossRef
26.
go back to reference Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y, Maehara Y. High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med. 2017;6:1453–64.CrossRef Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y, Maehara Y. High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med. 2017;6:1453–64.CrossRef
27.
go back to reference Conti SL, Thomas IC, Hagedorn JC, Chung BI, Chertow GM, Wagner TH, Brooks JD, Srinivas S, Leppert JT. Utilization of cytoreductive nephrectomy and patient survival in the targeted therapy era. Int J Cancer. 2014;134:2245–52.CrossRef Conti SL, Thomas IC, Hagedorn JC, Chung BI, Chertow GM, Wagner TH, Brooks JD, Srinivas S, Leppert JT. Utilization of cytoreductive nephrectomy and patient survival in the targeted therapy era. Int J Cancer. 2014;134:2245–52.CrossRef
28.
go back to reference Hutchinson L. Targeted therapies: another option for metastatic RCC. Nat Rev Clin Oncol. 2013;10:607.CrossRef Hutchinson L. Targeted therapies: another option for metastatic RCC. Nat Rev Clin Oncol. 2013;10:607.CrossRef
29.
go back to reference Aizer AA, Urun Y, McKay RR, Kibel AS, Nguyen PL, Choueiri TK. Cytoreductive nephrectomy in patients with metastatic non-clear-cell renal cell carcinoma (RCC). BJU Int. 2014;113:E67–74.CrossRef Aizer AA, Urun Y, McKay RR, Kibel AS, Nguyen PL, Choueiri TK. Cytoreductive nephrectomy in patients with metastatic non-clear-cell renal cell carcinoma (RCC). BJU Int. 2014;113:E67–74.CrossRef
30.
go back to reference Radunovic M, Nikolic N, Milenkovic S, Tomanovic N, Boricic I, Dimitrijevic M, Novakovic I, Basta-Jovanovic G. The MMP-2 and MMP-9 promoter polymorphisms and susceptibility to salivary gland cancer. J BUON. 2016;21:597–602.PubMed Radunovic M, Nikolic N, Milenkovic S, Tomanovic N, Boricic I, Dimitrijevic M, Novakovic I, Basta-Jovanovic G. The MMP-2 and MMP-9 promoter polymorphisms and susceptibility to salivary gland cancer. J BUON. 2016;21:597–602.PubMed
31.
go back to reference Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H, Yang B. Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol. 2018;9:1080.CrossRef Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H, Yang B. Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol. 2018;9:1080.CrossRef
32.
go back to reference Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci. 2019;76:653–65.CrossRef Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci. 2019;76:653–65.CrossRef
33.
go back to reference Mofers A, Pellegrini P, Linder S, D'Arcy P. Proteasome-associated deubiquitinases and cancer. Cancer Metastasis Rev. 2017;36:635–53.CrossRef Mofers A, Pellegrini P, Linder S, D'Arcy P. Proteasome-associated deubiquitinases and cancer. Cancer Metastasis Rev. 2017;36:635–53.CrossRef
34.
go back to reference Zhang YK, Tian WZ, Zhang RS, Zhang YJ, Ma HT. Ubiquitin-specific protease 44 inhibits cell growth by suppressing AKT signaling in non-small cell lung cancer. Kaohsiung J Med Sci. 2019;35:535–41.CrossRef Zhang YK, Tian WZ, Zhang RS, Zhang YJ, Ma HT. Ubiquitin-specific protease 44 inhibits cell growth by suppressing AKT signaling in non-small cell lung cancer. Kaohsiung J Med Sci. 2019;35:535–41.CrossRef
35.
go back to reference Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120:3446–56.CrossRef Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120:3446–56.CrossRef
36.
go back to reference Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.CrossRef Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.CrossRef
37.
go back to reference Yang C, Zhu S, Yang H, Deng S, Fan P, Li M, Jin X. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1. Am J Cancer Res. 2019;9:1722–33.PubMedPubMedCentral Yang C, Zhu S, Yang H, Deng S, Fan P, Li M, Jin X. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1. Am J Cancer Res. 2019;9:1722–33.PubMedPubMedCentral
38.
go back to reference Kumar A, Singh UK, Kini SG, Garg V, Agrawal S, Tomar PK, Pathak P, Chaudhary A, Gupta P, Malik A. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem. 2015;7:2065–86.CrossRef Kumar A, Singh UK, Kini SG, Garg V, Agrawal S, Tomar PK, Pathak P, Chaudhary A, Gupta P, Malik A. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem. 2015;7:2065–86.CrossRef
39.
go back to reference Park JM, Lee JE, Park CM, Kim JH. USP44 promotes the tumorigenesis of prostate cancer cells through EZH2 protein stabilization. Mol Cells. 2019;42:17–27.PubMedPubMedCentral Park JM, Lee JE, Park CM, Kim JH. USP44 promotes the tumorigenesis of prostate cancer cells through EZH2 protein stabilization. Mol Cells. 2019;42:17–27.PubMedPubMedCentral
Metadata
Title
Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma
Authors
Jiangqiao Zhou
Tianyu Wang
Tao Qiu
Zhongbao Chen
Xiaoxiong Ma
Long Zhang
Jilin Zou
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-6713-y

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine