Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2017

Open Access 01-12-2017

Proteasome-associated deubiquitinases and cancer

Authors: Arjan Mofers, Paola Pellegrini, Stig Linder, Pádraig D’Arcy

Published in: Cancer and Metastasis Reviews | Issue 4/2017

Login to get access

Abstract

Maintenance of protein homeostasis is a crucial process for the normal functioning of the cell. The regulated degradation of proteins is primarily facilitated by the ubiquitin proteasome system (UPS), a system of selective tagging of proteins with ubiquitin followed by proteasome-mediated proteolysis. The UPS is highly dynamic consisting of both ubiquitination and deubiquitination steps that modulate protein stabilization and degradation. Deregulation of protein stability is a common feature in the development and progression of numerous cancer types. Simultaneously, the elevated protein synthesis rate of cancer cells and consequential accumulation of misfolded proteins drives UPS addiction, thus sensitizing them to UPS inhibitors. This sensitivity along with the potential of stabilizing pro-apoptotic signaling pathways makes the proteasome an attractive clinical target for the development of novel therapies. Targeting of the catalytic 20S subunit of the proteasome is already a clinically validated strategy in multiple myeloma and other cancers. Spurred on by this success, promising novel inhibitors of the UPS have entered development, targeting the 20S as well as regulatory 19S subunit and inhibitors of deubiquitinating and ubiquitin ligase enzymes. In this review, we outline the manner in which deregulation of the UPS can cause cancer to develop, current clinical application of proteasome inhibitors, and the (pre-)clinical development of novel inhibitors of the UPS.
Literature
1.
go back to reference Herrmann, J., Ciechanover, A., Lerman, L. O., & Lerman, A. (2004). The ubiquitin-proteasome system in cardiovascular diseases—a hypothesis extended. Cardiovascular Research, 61(1), 11–21.PubMedCrossRef Herrmann, J., Ciechanover, A., Lerman, L. O., & Lerman, A. (2004). The ubiquitin-proteasome system in cardiovascular diseases—a hypothesis extended. Cardiovascular Research, 61(1), 11–21.PubMedCrossRef
16.
go back to reference Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N., et al. (2002). The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure, 10(5), 609–618.PubMedCrossRef Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N., et al. (2002). The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure, 10(5), 609–618.PubMedCrossRef
17.
go back to reference Kisselev, A. F., Akopian, T. N., Castillo, V., & Goldberg, A. L. (1999). Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Molecular Cell, 4(3), 395–402.PubMedCrossRef Kisselev, A. F., Akopian, T. N., Castillo, V., & Goldberg, A. L. (1999). Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Molecular Cell, 4(3), 395–402.PubMedCrossRef
23.
24.
go back to reference Fribley, A., & Wang, C. Y. (2006). Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biology & Therapy, 5(7), 745–748.CrossRef Fribley, A., & Wang, C. Y. (2006). Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biology & Therapy, 5(7), 745–748.CrossRef
26.
go back to reference Ling, Y. H., Liebes, L., Zou, Y., & Perez-Soler, R. (2003). Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. The Journal of Biological Chemistry, 278(36), 33714–33723. https://doi.org/10.1074/jbc.M302559200.PubMedCrossRef Ling, Y. H., Liebes, L., Zou, Y., & Perez-Soler, R. (2003). Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. The Journal of Biological Chemistry, 278(36), 33714–33723. https://​doi.​org/​10.​1074/​jbc.​M302559200.PubMedCrossRef
38.
go back to reference Kontopodis, E., Kotsakis, A., Kentepozidis, N., Syrigos, K., Ziras, N., Moutsos, M., et al. (2016). A phase II, open-label trial of bortezomib (VELCADE((R))) in combination with gemcitabine and cisplatin in patients with locally advanced or metastatic non-small cell lung cancer. Cancer Chemotherapy and Pharmacology, 77(5), 949–956. https://doi.org/10.1007/s00280-016-2997-7.PubMedCrossRef Kontopodis, E., Kotsakis, A., Kentepozidis, N., Syrigos, K., Ziras, N., Moutsos, M., et al. (2016). A phase II, open-label trial of bortezomib (VELCADE((R))) in combination with gemcitabine and cisplatin in patients with locally advanced or metastatic non-small cell lung cancer. Cancer Chemotherapy and Pharmacology, 77(5), 949–956. https://​doi.​org/​10.​1007/​s00280-016-2997-7.PubMedCrossRef
39.
44.
go back to reference Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8(6), 508–513.PubMedCrossRef Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. The Oncologist, 8(6), 508–513.PubMedCrossRef
47.
go back to reference Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5(5), 417–421.PubMedCrossRef Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5(5), 417–421.PubMedCrossRef
48.
go back to reference Sunwoo, J. B., Chen, Z., Dong, G., Yeh, N., Crowl Bancroft, C., Sausville, E., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7(5), 1419–1428.PubMed Sunwoo, J. B., Chen, Z., Dong, G., Yeh, N., Crowl Bancroft, C., Sausville, E., et al. (2001). Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clinical Cancer Research, 7(5), 1419–1428.PubMed
49.
go back to reference Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61(7), 3071–3076.PubMed Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61(7), 3071–3076.PubMed
50.
go back to reference Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lo, P., & Ford, R. J. (2003). Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. Journal of Immunology, 171(1), 88–95.CrossRef Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lo, P., & Ford, R. J. (2003). Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. Journal of Immunology, 171(1), 88–95.CrossRef
52.
go back to reference Yang, Y., Ikezoe, T., Saito, T., Kobayashi, M., Koeffler, H. P., & Taguchi, H. (2004). Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Science, 95(2), 176–180.PubMedCrossRef Yang, Y., Ikezoe, T., Saito, T., Kobayashi, M., Koeffler, H. P., & Taguchi, H. (2004). Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Science, 95(2), 176–180.PubMedCrossRef
53.
go back to reference Vaziri, S. A., Grabowski, D. R., Hill, J., Rybicki, L. R., Burk, R., Bukowski, R. M., et al. (2009). Inhibition of proteasome activity by bortezomib in renal cancer cells is p53 dependent and VHL independent. Anticancer Research, 29(8), 2961–2969.PubMedPubMedCentral Vaziri, S. A., Grabowski, D. R., Hill, J., Rybicki, L. R., Burk, R., Bukowski, R. M., et al. (2009). Inhibition of proteasome activity by bortezomib in renal cancer cells is p53 dependent and VHL independent. Anticancer Research, 29(8), 2961–2969.PubMedPubMedCentral
60.
go back to reference Wang, L., Wang, K. F., Chang, B. Y., Chen, X. Q., & Xia, Z. J. (2015). Once-weekly subcutaneous administration of bortezomib in patients with multiple myeloma. Asian Pacific Journal of Cancer Prevention, 16(5), 2093–2098.PubMedCrossRef Wang, L., Wang, K. F., Chang, B. Y., Chen, X. Q., & Xia, Z. J. (2015). Once-weekly subcutaneous administration of bortezomib in patients with multiple myeloma. Asian Pacific Journal of Cancer Prevention, 16(5), 2093–2098.PubMedCrossRef
61.
go back to reference Chen, D., Frezza, M., Schmitt, S., Kanwar, J., & Dou, Q. P. (2011). Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Current Cancer Drug Targets, 11(3), 239–253.PubMedPubMedCentralCrossRef Chen, D., Frezza, M., Schmitt, S., Kanwar, J., & Dou, Q. P. (2011). Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Current Cancer Drug Targets, 11(3), 239–253.PubMedPubMedCentralCrossRef
64.
go back to reference Hainsworth, J. D., Meluch, A. A., Spigel, D. R., Barton Jr., J., Simons, L., Meng, C., et al. (2007). Weekly docetaxel and bortezomib as first-line treatment for patients with hormone-refractory prostate cancer: a Minnie Pearl Cancer Research Network phase II trial. Clinical Genitourinary Cancer, 5(4), 278–283. https://doi.org/10.3816/CGC.2007.n.004.PubMedCrossRef Hainsworth, J. D., Meluch, A. A., Spigel, D. R., Barton Jr., J., Simons, L., Meng, C., et al. (2007). Weekly docetaxel and bortezomib as first-line treatment for patients with hormone-refractory prostate cancer: a Minnie Pearl Cancer Research Network phase II trial. Clinical Genitourinary Cancer, 5(4), 278–283. https://​doi.​org/​10.​3816/​CGC.​2007.​n.​004.PubMedCrossRef
72.
go back to reference Hagenbuchner, J., Ausserlechner, M. J., Porto, V., David, R., Meister, B., Bodner, M., et al. (2010). The anti-apoptotic protein BCL2L1/Bcl-xL is neutralized by pro-apoptotic PMAIP1/Noxa in neuroblastoma, thereby determining bortezomib sensitivity independent of prosurvival MCL1 expression. The Journal of Biological Chemistry, 285(10), 6904–6912. https://doi.org/10.1074/jbc.M109.038331.PubMedPubMedCentralCrossRef Hagenbuchner, J., Ausserlechner, M. J., Porto, V., David, R., Meister, B., Bodner, M., et al. (2010). The anti-apoptotic protein BCL2L1/Bcl-xL is neutralized by pro-apoptotic PMAIP1/Noxa in neuroblastoma, thereby determining bortezomib sensitivity independent of prosurvival MCL1 expression. The Journal of Biological Chemistry, 285(10), 6904–6912. https://​doi.​org/​10.​1074/​jbc.​M109.​038331.PubMedPubMedCentralCrossRef
73.
go back to reference Premkumar, D. R., Jane, E. P., DiDomenico, J. D., Vukmer, N. A., Agostino, N. R., & Pollack, I. F. (2012). ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines. The Journal of Pharmacology and Experimental Therapeutics, 341(3), 859–872. https://doi.org/10.1124/jpet.112.191536.PubMedPubMedCentralCrossRef Premkumar, D. R., Jane, E. P., DiDomenico, J. D., Vukmer, N. A., Agostino, N. R., & Pollack, I. F. (2012). ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines. The Journal of Pharmacology and Experimental Therapeutics, 341(3), 859–872. https://​doi.​org/​10.​1124/​jpet.​112.​191536.PubMedPubMedCentralCrossRef
79.
go back to reference Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8(8), 739–758.CrossRef Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8(8), 739–758.CrossRef
85.
89.
go back to reference Hurchla, M. A., Garcia-Gomez, A., Hornick, M. C., Ocio, E. M., Li, A., Blanco, J. F., et al. (2013). The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia, 27(2), 430–440. https://doi.org/10.1038/leu.2012.183.PubMedCrossRef Hurchla, M. A., Garcia-Gomez, A., Hornick, M. C., Ocio, E. M., Li, A., Blanco, J. F., et al. (2013). The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia, 27(2), 430–440. https://​doi.​org/​10.​1038/​leu.​2012.​183.PubMedCrossRef
90.
97.
go back to reference Kumar, S. K., Berdeja, J. G., Niesvizky, R., Lonial, S., Laubach, J. P., Hamadani, M., et al. (2014). Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. The Lancet Oncology, 15(13), 1503–1512. https://doi.org/10.1016/S1470-2045(14)71125-8.PubMedCrossRef Kumar, S. K., Berdeja, J. G., Niesvizky, R., Lonial, S., Laubach, J. P., Hamadani, M., et al. (2014). Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. The Lancet Oncology, 15(13), 1503–1512. https://​doi.​org/​10.​1016/​S1470-2045(14)71125-8.PubMedCrossRef
100.
go back to reference Paulus, A., Chitta, K., Akhtar, S., Personett, D., Miller, K. C., Thompson, K. J., et al. (2014). AT-101 downregulates BCL2 and MCL1 and potentiates the cytotoxic effects of lenalidomide and dexamethasone in preclinical models of multiple myeloma and Waldenstrom macroglobulinaemia. British Journal of Haematology, 164(3), 352–365. https://doi.org/10.1111/bjh.12633.PubMedCrossRef Paulus, A., Chitta, K., Akhtar, S., Personett, D., Miller, K. C., Thompson, K. J., et al. (2014). AT-101 downregulates BCL2 and MCL1 and potentiates the cytotoxic effects of lenalidomide and dexamethasone in preclinical models of multiple myeloma and Waldenstrom macroglobulinaemia. British Journal of Haematology, 164(3), 352–365. https://​doi.​org/​10.​1111/​bjh.​12633.PubMedCrossRef
108.
go back to reference Morra, F., Merolla, F., Napolitano, V., Ilardi, G., Miro, C., Paladino, S., et al. (2017). The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells. Oncotarget, 8(19), 31815–31829. 10.18632/oncotarget.16463.PubMedPubMedCentral Morra, F., Merolla, F., Napolitano, V., Ilardi, G., Miro, C., Paladino, S., et al. (2017). The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells. Oncotarget, 8(19), 31815–31829. 10.​18632/​oncotarget.​16463.PubMedPubMedCentral
110.
go back to reference Carra, G., Panuzzo, C., Torti, D., Parvis, G., Crivellaro, S., Familiari, U., et al. (2017). Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget. 10.18632/oncotarget.16348. Carra, G., Panuzzo, C., Torti, D., Parvis, G., Crivellaro, S., Familiari, U., et al. (2017). Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget. 10.​18632/​oncotarget.​16348.
125.
go back to reference Shah, J. J., Jakubowiak, A. J., O'Connor, O. A., Orlowski, R. Z., Harvey, R. D., Smith, M. R., et al. (2016). Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clinical Cancer Research, 22(1), 34–43. https://doi.org/10.1158/1078-0432.CCR-15-1237.PubMedCrossRef Shah, J. J., Jakubowiak, A. J., O'Connor, O. A., Orlowski, R. Z., Harvey, R. D., Smith, M. R., et al. (2016). Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clinical Cancer Research, 22(1), 34–43. https://​doi.​org/​10.​1158/​1078-0432.​CCR-15-1237.PubMedCrossRef
133.
Metadata
Title
Proteasome-associated deubiquitinases and cancer
Authors
Arjan Mofers
Paola Pellegrini
Stig Linder
Pádraig D’Arcy
Publication date
01-12-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9697-6

Other articles of this Issue 4/2017

Cancer and Metastasis Reviews 4/2017 Go to the issue

OriginalPaper

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine