Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Lymphoma | Research article

Evaluation of 18F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision

Authors: Manuel Weber, Walter Jentzen, Regina Hofferber, Ken Herrmann, Wolfgang Peter Fendler, Christoph Rischpler, Lale Umutlu, Maurizio Conti, Pedro Fragoso Costa, Miriam Sraieb, David Kersting

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

The superior accuracy and sensitivity of 18F-FDG-PET/CT in comparison to morphological imaging alone leads to an upstaging in up to 30% of lymphoma patients. Novel digital PET/CT scanners might enable to reduce administered tracer activity or scan time duration while maintaining diagnostic performance; this might allow for a higher patient throughput or a reduced radiation exposure, respectively. In particular, the radiation exposure reduction is of interest due to the often young age and high remission rate of lymphoma patients.

Methods

Twenty patients with (suspected) lymphoma (6 for initial staging, 12 after systemic treatment, 2 in suspicion of recurrence) sequentially underwent 18F-FDG-PET/CT examinations on a digital PET/CT (Siemens Biograph Vision) with a total scan time duration of 15 min (reference acquisition protocol) and 5 min (reduced acquisition protocol) using continuous-bed-motion. Both data sets were reconstructed using either standalone time of flight (TOF) or in combination with point spread function (PSF), each with 2 and 4 iterations. Lesion detectability by blinded assessment (separately for supra- and infradiaphragmal nodal lesions and for extranodal lesions), lesion image quantification, and image noise were used as metrics to assess diagnostic performance. Additionally, Deauville Score was compared for all patients after systemic treatment.

Results

All defined regions were correctly classified in the images acquired with reduced emission time, and therefore, no changes in staging were observed. Lesion quantification was acceptable, that is, mean absolute percentage deviation of maximum and peak standardized uptake values were 6.8 and 6.4% (derived from 30 lesions). A threefold reduction of scan time duration led to an increase in image noise from 7.1 to 11.0% (images reconstructed with 4 iterations) and from 4.7 to 7.2% (images reconstructed with 2 iterations). No deviations in Deauville Score were observed.

Conclusion

These results suggest that scan time duration or administered tracer activity can be reduced threefold without compromising diagnostic performance. Especially a reduction of administered activity might allow for a lower radiation exposure and better health economics. Larger trials are warranted to confirm our results.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheson BD, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.CrossRef Cheson BD, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.CrossRef
2.
go back to reference Duhrsen U, et al. Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J Clin Oncol. 2018;36(20):2024–34.CrossRef Duhrsen U, et al. Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J Clin Oncol. 2018;36(20):2024–34.CrossRef
3.
go back to reference Gelfand MJ, et al. Pre-medication to block [(18) F] FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35(10):984–90.CrossRef Gelfand MJ, et al. Pre-medication to block [(18) F] FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35(10):984–90.CrossRef
4.
go back to reference Cohade C, et al. Uptake in supraclavicular area fat ("USA-Fat"): description on 18F-FDG PET/CT. J Nucl Med. 2003;44(2):170–6.PubMed Cohade C, et al. Uptake in supraclavicular area fat ("USA-Fat"): description on 18F-FDG PET/CT. J Nucl Med. 2003;44(2):170–6.PubMed
5.
go back to reference Barrington SF, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):97–110.CrossRef Barrington SF, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):97–110.CrossRef
6.
go back to reference Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef
7.
go back to reference van Sluis J, et al. Image quality and semi-quantitative measurements of the Siemens biograph vision PET/CT: initial experiences and comparison with Siemens biograph mCT PET/CT. J Nucl Med. 2020;61(1):129–135. van Sluis J, et al. Image quality and semi-quantitative measurements of the Siemens biograph vision PET/CT: initial experiences and comparison with Siemens biograph mCT PET/CT. J Nucl Med. 2020;61(1):129–135.
8.
go back to reference Gnesin S, et al. Phantom-based image quality assessment of clinical (18) F-FDG protocols in digital PET/CT and comparison to conventional PMT-based PET/CT. EJNMMI Phys. 2020;7(1):1.CrossRef Gnesin S, et al. Phantom-based image quality assessment of clinical (18) F-FDG protocols in digital PET/CT and comparison to conventional PMT-based PET/CT. EJNMMI Phys. 2020;7(1):1.CrossRef
9.
go back to reference Surti S, et al. Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology. J Nucl Med. 2020;61(11):1684–1690. Surti S, et al. Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology. J Nucl Med. 2020;61(11):1684–1690.
10.
go back to reference van Sluis J, et al. Image quality and activity optimization in oncological (18) F-FDG PET using the digital biograph vision PET/CT. J Nucl Med. 2019. van Sluis J, et al. Image quality and activity optimization in oncological (18) F-FDG PET using the digital biograph vision PET/CT. J Nucl Med. 2019.
11.
go back to reference Shah DJ, Sachs RK, Wilson DJ. Radiation-induced cancer: a modern view. Br J Radiol. 2012;85(1020):e1166–73.CrossRef Shah DJ, Sachs RK, Wilson DJ. Radiation-induced cancer: a modern view. Br J Radiol. 2012;85(1020):e1166–73.CrossRef
12.
go back to reference Rauscher I, et al. Can the injected dose be reduced in (68) Ga-PSMA-11 PET/CT maintaining high image quality for lesion detection? J Nucl Med. 2020;61(2):189–193. Rauscher I, et al. Can the injected dose be reduced in (68) Ga-PSMA-11 PET/CT maintaining high image quality for lesion detection? J Nucl Med. 2020;61(2):189–193.
13.
go back to reference Bramer, A., Phantom study for optimization [18F] FDG imaging of lymphoma using Biograph Vision PET/CT., in Department for Nuclear medicine. 2019, University Duisburg-Essen. Bramer, A., Phantom study for optimization [18F] FDG imaging of lymphoma using Biograph Vision PET/CT., in Department for Nuclear medicine. 2019, University Duisburg-Essen.
14.
go back to reference Fragoso Costa P, et al. Emission time reduction for 2-[18F] FDG examinations in lymphoma patients with a PET/CT with SiPM - a feasibility phantom study (EPS-093); European Association of Nuclear Medicine October 22–30, 2020 Virtual. Eur J Nucl Med Mol Imaging. 2020;47(Suppl 1):257. Fragoso Costa P, et al. Emission time reduction for 2-[18F] FDG examinations in lymphoma patients with a PET/CT with SiPM - a feasibility phantom study (EPS-093); European Association of Nuclear Medicine October 22–30, 2020 Virtual. Eur J Nucl Med Mol Imaging. 2020;47(Suppl 1):257.
15.
go back to reference Nagaki A, Onoguchi M, Matsutomo N. Patient weight-based acquisition protocols to optimize (18) F-FDG PET/CT image quality. J Nucl Med Technol. 2011;39(2):72–6.CrossRef Nagaki A, Onoguchi M, Matsutomo N. Patient weight-based acquisition protocols to optimize (18) F-FDG PET/CT image quality. J Nucl Med Technol. 2011;39(2):72–6.CrossRef
16.
go back to reference Viner M, et al. Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology. 2013;267(2):596–601.CrossRef Viner M, et al. Liver SULmean at FDG PET/CT: interreader agreement and impact of placement of volume of interest. Radiology. 2013;267(2):596–601.CrossRef
17.
go back to reference Kurland BF, et al. Test-retest reproducibility of (18) F-FDG PET/CT uptake in Cancer patients within a qualified and calibrated local network. J Nucl Med. 2019;60(5):608–14.CrossRef Kurland BF, et al. Test-retest reproducibility of (18) F-FDG PET/CT uptake in Cancer patients within a qualified and calibrated local network. J Nucl Med. 2019;60(5):608–14.CrossRef
18.
go back to reference Weber, M., et al., Evaluation of 68Ga-PSMA PET/CT images acquired with a reduced scan time duration in prostate Cancer patients using the digital biograph vision. 2020. Weber, M., et al., Evaluation of 68Ga-PSMA PET/CT images acquired with a reduced scan time duration in prostate Cancer patients using the digital biograph vision. 2020.
19.
go back to reference Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.CrossRef Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.CrossRef
20.
go back to reference Haque W, et al. Radiation therapy is an effective modality in the treatment of mantle cell lymphoma, even in heavily pretreated patients. Clin Lymphoma Myeloma Leuk. 2014;14(6):474–9.CrossRef Haque W, et al. Radiation therapy is an effective modality in the treatment of mantle cell lymphoma, even in heavily pretreated patients. Clin Lymphoma Myeloma Leuk. 2014;14(6):474–9.CrossRef
21.
go back to reference Kubota K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28(6):696–703.CrossRef Kubota K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28(6):696–703.CrossRef
22.
go back to reference Boerner AR, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med. 1999;26(3):226–30.CrossRef Boerner AR, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med. 1999;26(3):226–30.CrossRef
23.
go back to reference Sonni I, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5(1):9.CrossRef Sonni I, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5(1):9.CrossRef
24.
go back to reference Fueger BJ, et al. Comparison of CT, PET, and PET/CT for staging of patients with indolent non-Hodgkin's lymphoma. Mol Imaging Biol. 2009;11(4):269–74.CrossRef Fueger BJ, et al. Comparison of CT, PET, and PET/CT for staging of patients with indolent non-Hodgkin's lymphoma. Mol Imaging Biol. 2009;11(4):269–74.CrossRef
Metadata
Title
Evaluation of 18F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision
Authors
Manuel Weber
Walter Jentzen
Regina Hofferber
Ken Herrmann
Wolfgang Peter Fendler
Christoph Rischpler
Lale Umutlu
Maurizio Conti
Pedro Fragoso Costa
Miriam Sraieb
David Kersting
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07723-2

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine