Skip to main content
Top
Published in: BMC Cancer 1/2020

Open Access 01-12-2020 | Ovarian Cancer | Research article

Cell type-specific genotoxicity in estrogen-exposed ovarian and fallopian epithelium

Authors: Liang Song, Zizhi Tang, Changsheng Peng, Yueming Yang, Chang Guo, Danqing Wang, Liandi Guo, Jie Chen, Cong Liu

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

Loss of the genomic stability jeopardize genome stability and promote malignancies. A fraction of ovarian cancer (OvCa) arises from pathological mutations of DNA repair genes that result in highly mutagenic genomes. However, it remains elusive why the ovarian epithelial cells are particularly susceptible to the malfunction of genome surveillance system.

Methods

To explore the genotoxic responses in the unique context of microenvironment for ovarian epithelium that is periodically exposed to high-level steroid hormones, we examined estrogen-induced DNA damage by immunofluorescence in OvCa cell lines, animal and human samples.

Results

We found that OvCa cells are burdened with high levels of endogenous DNA damage that is not correlated with genomic replication. The elevation of damage burden is attributable to the excessive concentration of bioactive estrogen instead of its chemomimetic derivative (tamoxifen). Induction of DNA lesions by estrogen is dependent on the expression of hormone receptors, and occurs in G1 and non-G1 phases of cell cycle. Moreover, depletion of homologous recombination (HR) genes (BRCA1 and BRCA2) exacerbated the genotoxicity of estrogen, highlighting the role of HR to counteract hormone-induced genome instability. Finally, the estrogen-induced DNA damage was reproduced in the epithelial compartments of both ovarian and fallopian tubes.

Conclusions

Taken together, our study disclose that estrogen-induced genotoxicity and HR deficiency perturb the genome stability of ovarian and fallopian epithelial cells, representing microenvironmental and genetic risk factors, respectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13..CrossRef Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13..CrossRef
2.
go back to reference Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.CrossRef Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.CrossRef
3.
go back to reference Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.CrossRef Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.CrossRef
4.
go back to reference Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-Strand break. Trends Cell Biol. 2015;26:52–64.CrossRef Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-Strand break. Trends Cell Biol. 2015;26:52–64.CrossRef
5.
go back to reference Bouwman P, Aly A, Escandell JM, Pieterse M, Jonkers J. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010;17:688–95.CrossRef Bouwman P, Aly A, Escandell JM, Pieterse M, Jonkers J. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010;17:688–95.CrossRef
6.
go back to reference Guirouilh-Barbat J, Redon C, Pommier Y. Transcription-coupled DNA double-Strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol Biol Cell. 2008;19:3969–81.CrossRef Guirouilh-Barbat J, Redon C, Pommier Y. Transcription-coupled DNA double-Strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol Biol Cell. 2008;19:3969–81.CrossRef
7.
go back to reference Ma CJ, Bryan G, YoungHo K, Patrick S, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res. 2017;45:749–61.CrossRef Ma CJ, Bryan G, YoungHo K, Patrick S, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res. 2017;45:749–61.CrossRef
8.
go back to reference Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7:263–72.CrossRef Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7:263–72.CrossRef
9.
go back to reference Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16:35–42.CrossRef Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16:35–42.CrossRef
10.
go back to reference Harrison JC, Haber JE. Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet. 2006;40:209–35.CrossRef Harrison JC, Haber JE. Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet. 2006;40:209–35.CrossRef
11.
go back to reference Xu X, Wagner KU, Larson D, et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature. 1999;22:37–43. Xu X, Wagner KU, Larson D, et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature. 1999;22:37–43.
12.
go back to reference Davies H, Glodzik D, Morganella S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23:517.CrossRef Davies H, Glodzik D, Morganella S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23:517.CrossRef
13.
go back to reference King M-C. Breast and ovarian Cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–6.CrossRef King M-C. Breast and ovarian Cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–6.CrossRef
14.
go back to reference Wang YK, Bashashati A, Anglesio MS, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856-65. Wang YK, Bashashati A, Anglesio MS, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856-65.
15.
go back to reference Gabai-Kapara E, Lahad A, Kaufman B, et al. Population-based screening for breast and ovarian cancer risk due to <em>BRCA1</em> and <em>BRCA2</em>. Proc Natl Acad Sci. 2014;111:14205–10.CrossRef Gabai-Kapara E, Lahad A, Kaufman B, et al. Population-based screening for breast and ovarian cancer risk due to <em>BRCA1</em> and <em>BRCA2</em>. Proc Natl Acad Sci. 2014;111:14205–10.CrossRef
16.
go back to reference Jones S, Wang T-L, Shih I-M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.CrossRef Jones S, Wang T-L, Shih I-M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.CrossRef
17.
go back to reference Lukas S, Cara R-B, Andreas K. BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer. 2019;22:1–14.CrossRef Lukas S, Cara R-B, Andreas K. BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer. 2019;22:1–14.CrossRef
18.
go back to reference Coetzee SG, Shen HC, Hazelett DJ, et al. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Hum Mol Genet. 2015;24:3595–607.CrossRef Coetzee SG, Shen HC, Hazelett DJ, et al. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Hum Mol Genet. 2015;24:3595–607.CrossRef
19.
go back to reference Shuk-Mei H. Estrogen, Progesterone and Epithelial Ovarian Cancer. Reprod Biol Endocrinol. 2003;1(1):73. Shuk-Mei H. Estrogen, Progesterone and Epithelial Ovarian Cancer. Reprod Biol Endocrinol. 2003;1(1):73.
20.
go back to reference Sasanuma H, Tsuda M, Morimoto S, et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes. Proc Natl Acad Sci. 2018;115:E10642–51.CrossRef Sasanuma H, Tsuda M, Morimoto S, et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes. Proc Natl Acad Sci. 2018;115:E10642–51.CrossRef
21.
go back to reference de los Santos MJ, Garcia-Laez V, Beltran-Torregrosa D, et al. Hormonal and molecular characterization of follicular fluid, cumulus cells and oocytes from pre-ovulatory follicles in stimulated and unstimulated cycles. Hum Reprod. 2012;27:1596–605.CrossRef de los Santos MJ, Garcia-Laez V, Beltran-Torregrosa D, et al. Hormonal and molecular characterization of follicular fluid, cumulus cells and oocytes from pre-ovulatory follicles in stimulated and unstimulated cycles. Hum Reprod. 2012;27:1596–605.CrossRef
22.
go back to reference Nikzainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47.CrossRef Nikzainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47.CrossRef
23.
go back to reference Murdoch WJ, Kirk EAV. Steroid hormonal regulation of proliferative, p53 tumor suppressor, and apoptotic responses of sheep ovarian surface epithelial cells. Mol Cell Endocrinol. 2002;186:61–7.CrossRef Murdoch WJ, Kirk EAV. Steroid hormonal regulation of proliferative, p53 tumor suppressor, and apoptotic responses of sheep ovarian surface epithelial cells. Mol Cell Endocrinol. 2002;186:61–7.CrossRef
24.
go back to reference Santen R, Cavalieri E, Rogan E, et al. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, Genotoxic effects. Ann N Y Acad Sci. 2009;1155:132–40.CrossRef Santen R, Cavalieri E, Rogan E, et al. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, Genotoxic effects. Ann N Y Acad Sci. 2009;1155:132–40.CrossRef
25.
go back to reference Santen RJ, Yue W, Wang J-P. Estrogen metabolites and breast cancer. Steroids. 2015;99:61–6.CrossRef Santen RJ, Yue W, Wang J-P. Estrogen metabolites and breast cancer. Steroids. 2015;99:61–6.CrossRef
26.
go back to reference Mauras N, Santen RJ, Colón-Otero G, et al. Estrogens and their Genotoxic metabolites are increased in obese Prepubertal girls. J Clin Endocrinol Metab. 2015;100:2322–8.CrossRef Mauras N, Santen RJ, Colón-Otero G, et al. Estrogens and their Genotoxic metabolites are increased in obese Prepubertal girls. J Clin Endocrinol Metab. 2015;100:2322–8.CrossRef
27.
go back to reference Corzo C, Iniesta M, et al. Role of Fallopian Tubes in the Development of Ovarian Cancer. J Minim Invasive Gynecol. 2017;24:230–4.CrossRef Corzo C, Iniesta M, et al. Role of Fallopian Tubes in the Development of Ovarian Cancer. J Minim Invasive Gynecol. 2017;24:230–4.CrossRef
28.
go back to reference Venkatesan P. Possible origin of ovarian cancer in the fallopian tubes. Lancet Oncol. 2017;18:e714. Venkatesan P. Possible origin of ovarian cancer in the fallopian tubes. Lancet Oncol. 2017;18:e714.
29.
go back to reference Klinkebiel D, Zhang W, Akers SN, et al. DNA Methylome Analyses Implicate Fallopian Tube Epithelia as the Origin for High-Grade Serous Ovarian Cancer. Mol Cancer Res. 2016;14:787-94. Klinkebiel D, Zhang W, Akers SN, et al. DNA Methylome Analyses Implicate Fallopian Tube Epithelia as the Origin for High-Grade Serous Ovarian Cancer. Mol Cancer Res. 2016;14:787-94.
30.
go back to reference Lindgren PR, Backstrom T, Cajander S, Damber MG, Olofsson JI. The pattern of estradiol and progesterone differs in serum and tissue of benign and malignant ovarian tumors. Int J Oncol. 2002;21:583–9.PubMed Lindgren PR, Backstrom T, Cajander S, Damber MG, Olofsson JI. The pattern of estradiol and progesterone differs in serum and tissue of benign and malignant ovarian tumors. Int J Oncol. 2002;21:583–9.PubMed
31.
go back to reference Olímpio RMC, Moretto FCF, De Sibio MT, et al. The importance of estrogen for bone protection in experimental hyperthyroidism in human osteoblasts. Life Sci. 2019;231:116556.CrossRef Olímpio RMC, Moretto FCF, De Sibio MT, et al. The importance of estrogen for bone protection in experimental hyperthyroidism in human osteoblasts. Life Sci. 2019;231:116556.CrossRef
32.
go back to reference Stork CT, Bocek M, Crossley MP, et al. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife. 2016;5:e17548.CrossRef Stork CT, Bocek M, Crossley MP, et al. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife. 2016;5:e17548.CrossRef
Metadata
Title
Cell type-specific genotoxicity in estrogen-exposed ovarian and fallopian epithelium
Authors
Liang Song
Zizhi Tang
Changsheng Peng
Yueming Yang
Chang Guo
Danqing Wang
Liandi Guo
Jie Chen
Cong Liu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07524-7

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine