Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

Analytical validation of CanAssist-Breast: an immunohistochemistry based prognostic test for hormone receptor positive breast cancer patients

Authors: Arun Kumar Attuluri, Chandra Prakash V. Serkad, Aparna Gunda, Charusheila Ramkumar, Chetana Basavaraj, Ljubomir Buturovic, Lekshmi Madhav, Nirupama Naidu, Naveen Krishnamurthy, R. Prathima, Suchita Kanaldekar, Manjiri M. Bakre

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

CanAssist-Breast is an immunohistochemistry based test that predicts risk of distant recurrence in early-stage hormone receptor positive breast cancer patients within first five years of diagnosis. Immunohistochemistry gradings for 5 biomarkers (CD44, ABCC4, ABCC11, N-Cadherin and pan-Cadherins) and 3 clinical parameters (tumor size, tumor grade and node status) of 298 patient cohort were used to develop a machine learning based statistical algorithm. The algorithm generates a risk score based on which patients are stratified into two groups, low- or high-risk for recurrence. The aim of the current study is to demonstrate the analytical performance with respect to repeatability and reproducibility of CanAssist-Breast.

Methods

All potential sources of variation in CanAssist-Breast testing involving operator, run and observer that could affect the immunohistochemistry performance were tested using appropriate statistical analysis methods for each of the CanAssist-Breast biomarkers using a total 309 samples. The cumulative effect of these variations in the immunohistochemistry gradings on the generation of CanAssist-Breast risk score and risk category were also evaluated. Intra-class Correlation Coefficient, Bland Altman plots and pair-wise agreement were performed to establish concordance on IHC gradings, risk score and risk categorization respectively.

Results

CanAssist-Breast test exhibited high levels of concordance on immunohistochemistry gradings for all biomarkers with Intra-class Correlation Coefficient of ≥0.75 across all reproducibility and repeatability experiments. Bland-Altman plots demonstrated that agreement on risk scores between the comparators was within acceptable limits. We also observed > 90% agreement on risk categorization (low- or high-risk) across all variables tested.

Conclusions

The extensive analytical validation data for the CanAssist-Breast test, evaluating immunohistochemistry performance, risk score generation and risk categorization showed excellent agreement across variables, demonstrating that the test is robust.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fisher B, Dignam J, Wolmark N, DeCillis A, Emir B, Wickerham DL, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst. 1997;89:1673–82.CrossRef Fisher B, Dignam J, Wolmark N, DeCillis A, Emir B, Wickerham DL, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst. 1997;89:1673–82.CrossRef
2.
go back to reference Fisher B, Jeong J-H, Bryant J, Anderson S, Dignam J. Fisher, et al. treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and bowel project randomised clinical trials. Lancet. 2004;364:858–68.CrossRef Fisher B, Jeong J-H, Bryant J, Anderson S, Dignam J. Fisher, et al. treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and bowel project randomised clinical trials. Lancet. 2004;364:858–68.CrossRef
3.
go back to reference Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320:479–84.CrossRef Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320:479–84.CrossRef
4.
go back to reference Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.CrossRef Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.CrossRef
5.
go back to reference van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRef van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRef
6.
go back to reference Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.CrossRef Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.CrossRef
7.
go back to reference Wallden B, Storhoff J, Nielsen T, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genet. 2015;8:54. Wallden B, Storhoff J, Nielsen T, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genet. 2015;8:54.
8.
go back to reference Dubsky P, Filipits M, Jakesz R, Rudas M, et al. Endopredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. 2013;24:640–7.CrossRef Dubsky P, Filipits M, Jakesz R, Rudas M, et al. Endopredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. 2013;24:640–7.CrossRef
9.
go back to reference RamKumar C, Buturovic L, Malpani S, et al. Development of a novel proteomic risk-classifier for prognostication of patients with early-stage hormone receptor-positive breast Cancer. Biomark Insights. 2018;13:1–9.CrossRef RamKumar C, Buturovic L, Malpani S, et al. Development of a novel proteomic risk-classifier for prognostication of patients with early-stage hormone receptor-positive breast Cancer. Biomark Insights. 2018;13:1–9.CrossRef
10.
go back to reference Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP working group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11:66–73.CrossRef Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP working group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11:66–73.CrossRef
11.
go back to reference O’Hurley G, Sjorstedt E, Rahman A, et al. Garbage in, garbage out: a critical evaluation of strategies used for validation of immunohistochemical biomarkers. Mol Oncol. 2014;8:783–98.CrossRef O’Hurley G, Sjorstedt E, Rahman A, et al. Garbage in, garbage out: a critical evaluation of strategies used for validation of immunohistochemical biomarkers. Mol Oncol. 2014;8:783–98.CrossRef
12.
go back to reference Patrick LF, Linda AB, Lisa AF, et al. Principles of analytic validation of immunohistochemical assays: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2014;138:1432–43.CrossRef Patrick LF, Linda AB, Lisa AF, et al. Principles of analytic validation of immunohistochemical assays: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2014;138:1432–43.CrossRef
13.
go back to reference Quality Assurance for Design Control and Implementation of IHC; Approved guideline - Second Edition. 2011. CLSI- I/LA28-A2. Quality Assurance for Design Control and Implementation of IHC; Approved guideline - Second Edition. 2011. CLSI- I/LA28-A2.
14.
go back to reference Cicchetti and Domenic V. Guidelines, criteria and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284–90.CrossRef Cicchetti and Domenic V. Guidelines, criteria and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284–90.CrossRef
15.
go back to reference Bland M, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;8:307–10.CrossRef Bland M, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;8:307–10.CrossRef
16.
go back to reference Adams EJ, Green JA, Clark AH, Youngson JH. Comparison of different scoring systems for immunohistochemical staining. J Clin Patho 1999; l52: 75–77. Adams EJ, Green JA, Clark AH, Youngson JH. Comparison of different scoring systems for immunohistochemical staining. J Clin Patho 1999; l52: 75–77.
17.
go back to reference van Diest PJ, Weger DR, Lindholm J. Reproducibility of subjective immunoscoring of steroid receptors in breast cancer. Anal Quant Cytol Histol. 1996;18:351–4.PubMed van Diest PJ, Weger DR, Lindholm J. Reproducibility of subjective immunoscoring of steroid receptors in breast cancer. Anal Quant Cytol Histol. 1996;18:351–4.PubMed
18.
go back to reference Kirkegaard T, Edwards J, Tovey S, McGlynn LM, et al. Observer variation in immunohistochemical analysis of protein expression, time for a change? Histopathology. 2006;48:787–94.CrossRef Kirkegaard T, Edwards J, Tovey S, McGlynn LM, et al. Observer variation in immunohistochemical analysis of protein expression, time for a change? Histopathology. 2006;48:787–94.CrossRef
19.
go back to reference Maia DM. Immunohistochemical assays for HER2 overexpression. J Clin Oncol. 1999;17:1650.CrossRef Maia DM. Immunohistochemical assays for HER2 overexpression. J Clin Oncol. 1999;17:1650.CrossRef
20.
go back to reference Bakre MM, et al. Clinical validation of an immunohistochemistry-based CanAssist-Breast test for distant recurrence prediction in hormone receptor-positive breast cancer patients. Can Med. 2019; Epub ahead of print. Bakre MM, et al. Clinical validation of an immunohistochemistry-based CanAssist-Breast test for distant recurrence prediction in hormone receptor-positive breast cancer patients. Can Med. 2019; Epub ahead of print.
21.
go back to reference Nielsen T, Wallden B, Schaper C, Ferree S, et al. Analytical validation of the PAM50-based Prosigna breast Cancer prognostic gene signature assay and nCounter analysis system using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14:177.CrossRef Nielsen T, Wallden B, Schaper C, Ferree S, et al. Analytical validation of the PAM50-based Prosigna breast Cancer prognostic gene signature assay and nCounter analysis system using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14:177.CrossRef
22.
go back to reference Kronenwett R, Bohmann K, Prinzler J, Sinn BV, et al. Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test. BMC Cancer. 2012;12:456.CrossRef Kronenwett R, Bohmann K, Prinzler J, Sinn BV, et al. Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test. BMC Cancer. 2012;12:456.CrossRef
23.
go back to reference Robert AA, Floore A, Curry B, et al. Robust interlaboratory reproducibility of a gene expression signature measurement consistent with the needs of a new generation of diagnostic tools. BMC Genomics. 2007;8:148.CrossRef Robert AA, Floore A, Curry B, et al. Robust interlaboratory reproducibility of a gene expression signature measurement consistent with the needs of a new generation of diagnostic tools. BMC Genomics. 2007;8:148.CrossRef
Metadata
Title
Analytical validation of CanAssist-Breast: an immunohistochemistry based prognostic test for hormone receptor positive breast cancer patients
Authors
Arun Kumar Attuluri
Chandra Prakash V. Serkad
Aparna Gunda
Charusheila Ramkumar
Chetana Basavaraj
Ljubomir Buturovic
Lekshmi Madhav
Nirupama Naidu
Naveen Krishnamurthy
R. Prathima
Suchita Kanaldekar
Manjiri M. Bakre
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5443-5

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine