Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/HOTAIR signaling pathway

Authors: Xiaohong Yang, En Luo, Xin Liu, Bin Han, Xiaoping Yu, Xiaoli Peng

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

The long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) plays a crucial role in cancer progression, which is regulated by the interferon regulatory factor-1 (IRF1) and up-streaming Akt activation. The present study evaluated the chemopreventive effects of delphinidin-3-glucoside (Dp), a major anthocyanin present in pigmented fruits and vegetables, on breast carcinogenesis, and investigate the role of the Akt/HOTAIR signaling pathway.

Methods

Human breast epithelial cells MCF10A were treated with carcinogens (NNK and B[a]P) or co-treated with carcinogens plus Dp for 30 days. Then, the cancer-associated properties of the treated cells were evaluated to assess the carcinogenesis and the effects of Dp. HOTAIR levels were detected by qRT-PCR. The proteins expression was measured by western blots, immunofluorescence and immunohistochemistry. Xenografted tumors were made by implanting breast cancer cells MDA-MB-231-Luc-GFP in athymic mice. ChIP-qPCR analysis was used to detect the IRF1 binding to the HOTAIR promoter.

Results

Carcinogens treatment induces apparent carcinogenic transformation in MCF10A cells including reduced dependence on growth factors, anchorage-independent cell growth and aberrant wound-healing ability, which is effectively suppressed by Dp co-treatment. The level of HOTAIR significantly increases in a time-dependent manner during chronic breast carcinogenesis. Dp treatment down-regulates HOTAIR expression in breast carcinogenesis and breast cancer cells. Furthermore, Dp administration inhibits the growth of xenografted breast tumors in athymic mice, and decreases HOTAIR in vivo. Further studies showed that Dp represses Akt activation, promotes IRF1 expression and increases IRF1 binding to the HOTAIR promoter. Silence of IRF1 expression via transfecting cells with IRF1 siRNAs significantly reduced the effects of Dp on HOTAIR, resulting in decreased cytotoxic effects of Dp on breast cancer cells.

Conclusions

These data suggest the effective chemopreventive effect of Dp on breast carcinogenesis, in which down-regulation of HOTAIR plays a critical role.
Literature
2.
3.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
4.
go back to reference Magne Nde CB, Zingue S, Winter E, Creczynski-Pasa TB, Michel T, Fernandez X, Njamen D, Clyne C. Flavonoids, breast cancer chemopreventive and/or chemotherapeutic agents. Curr Med Chem2015. [Epub ahead of print] Magne Nde CB, Zingue S, Winter E, Creczynski-Pasa TB, Michel T, Fernandez X, Njamen D, Clyne C. Flavonoids, breast cancer chemopreventive and/or chemotherapeutic agents. Curr Med Chem2015. [Epub ahead of print]
5.
go back to reference Khankari NK, Bradshaw PT, McCullough LE, Teitelbaum SL, Steck SE, Fink BN, Xu X, Ahn J, Ambrosone CB, Crew KD, et al. Genetic variation in multiple biologic pathways, flavonoid intake, and breast cancer. Cancer Causes Control. 2014;25:215–26.CrossRefPubMed Khankari NK, Bradshaw PT, McCullough LE, Teitelbaum SL, Steck SE, Fink BN, Xu X, Ahn J, Ambrosone CB, Crew KD, et al. Genetic variation in multiple biologic pathways, flavonoid intake, and breast cancer. Cancer Causes Control. 2014;25:215–26.CrossRefPubMed
6.
go back to reference Aboonabi A, Singh I. Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox. Biomed Pharmacother. 2015;72:30–6.CrossRefPubMed Aboonabi A, Singh I. Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox. Biomed Pharmacother. 2015;72:30–6.CrossRefPubMed
7.
go back to reference Vendrame S, Klimis-Zacas D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-kB and mitogen-activated protein kinase signaling cascades. Nutr Rev. 2015;73:348–58.CrossRefPubMed Vendrame S, Klimis-Zacas D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-kB and mitogen-activated protein kinase signaling cascades. Nutr Rev. 2015;73:348–58.CrossRefPubMed
8.
go back to reference Iwashina T. Contribution to flower colors of flavonoids including anthocyanins: a review. Nat Prod Commun. 2015;10:529–44.PubMed Iwashina T. Contribution to flower colors of flavonoids including anthocyanins: a review. Nat Prod Commun. 2015;10:529–44.PubMed
9.
go back to reference Bhan A, Mandal SS. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim Biophys Acta. 1856;2015:151–64. Bhan A, Mandal SS. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim Biophys Acta. 1856;2015:151–64.
10.
go back to reference Zeng S, Xiao YF, Tang B, Hu CJ, Xie R, Yang SM, Li BS. Long Noncoding RNA in Digestive Tract Cancers: Function, Mechanism, and Potential Biomarker. Oncologist. 2015;20:898–906.CrossRefPubMed Zeng S, Xiao YF, Tang B, Hu CJ, Xie R, Yang SM, Li BS. Long Noncoding RNA in Digestive Tract Cancers: Function, Mechanism, and Potential Biomarker. Oncologist. 2015;20:898–906.CrossRefPubMed
12.
13.
go back to reference Zhang L, Song X, Wang X, Xie Y, Wang Z, Xu Y, You X, Liang Z, Cao H. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res Treat. 2015;152:199–208.CrossRefPubMed Zhang L, Song X, Wang X, Xie Y, Wang Z, Xu Y, You X, Liang Z, Cao H. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res Treat. 2015;152:199–208.CrossRefPubMed
14.
go back to reference Hao S, Shao Z. HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis. Int J Clin Exp Pathol. 2015;8:7223–8.PubMedPubMedCentral Hao S, Shao Z. HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis. Int J Clin Exp Pathol. 2015;8:7223–8.PubMedPubMedCentral
15.
go back to reference Yang G, Zhang S, Gao F, Liu Z, Lu M, Peng S, Zhang T, Zhang F. Osteopontin enhances the expression of HOTAIR in cancer cells via IRF1. Biochim Biophys Acta. 1839;2014:837–48. Yang G, Zhang S, Gao F, Liu Z, Lu M, Peng S, Zhang T, Zhang F. Osteopontin enhances the expression of HOTAIR in cancer cells via IRF1. Biochim Biophys Acta. 1839;2014:837–48.
16.
go back to reference Chen J, Lin C, Yong W, Ye Y, Huang Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem. 2015;35:722–8.PubMed Chen J, Lin C, Yong W, Ye Y, Huang Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem. 2015;35:722–8.PubMed
17.
go back to reference Rathore K, Wang HC. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens. Mol Carcinog. 2012;51:280–9.CrossRefPubMed Rathore K, Wang HC. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens. Mol Carcinog. 2012;51:280–9.CrossRefPubMed
18.
go back to reference Rathore K, Choudhary S, Odoi A, Wang HC. Green tea catechin intervention of reactive oxygen species-mediated ERK pathway activation and chronically induced breast cell carcinogenesis. Carcinogenesis. 2012;33:174–83.CrossRefPubMed Rathore K, Choudhary S, Odoi A, Wang HC. Green tea catechin intervention of reactive oxygen species-mediated ERK pathway activation and chronically induced breast cell carcinogenesis. Carcinogenesis. 2012;33:174–83.CrossRefPubMed
19.
go back to reference Mosby TT, Cosgrove M, Sarkardei S, Platt KL, Kaina B. Nutrition in adult and childhood cancer: role of carcinogens and anti-carcinogens. Anticancer Res. 2012;32:4171–92.PubMed Mosby TT, Cosgrove M, Sarkardei S, Platt KL, Kaina B. Nutrition in adult and childhood cancer: role of carcinogens and anti-carcinogens. Anticancer Res. 2012;32:4171–92.PubMed
20.
go back to reference Link LB, Canchola AJ, Bernstein L, Clarke CA, Stram DO, Ursin G, et al. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am J Clin Nutr. 2013;98:1524–32.CrossRefPubMedPubMedCentral Link LB, Canchola AJ, Bernstein L, Clarke CA, Stram DO, Ursin G, et al. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am J Clin Nutr. 2013;98:1524–32.CrossRefPubMedPubMedCentral
21.
go back to reference Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One. 2013;8:e54318.CrossRefPubMedPubMedCentral Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One. 2013;8:e54318.CrossRefPubMedPubMedCentral
22.
go back to reference Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG, Lee SJ, Chun SC, Chung IM. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem. 2007;55:4802–9.CrossRefPubMed Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG, Lee SJ, Chun SC, Chung IM. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem. 2007;55:4802–9.CrossRefPubMed
23.
go back to reference Kotakis C. Non-coding RNAs’ partitioning in the evolution of photosynthetic organisms via energy transduction and redox signaling. RNA Biol. 2015;12:101–4.CrossRefPubMedPubMedCentral Kotakis C. Non-coding RNAs’ partitioning in the evolution of photosynthetic organisms via energy transduction and redox signaling. RNA Biol. 2015;12:101–4.CrossRefPubMedPubMedCentral
24.
go back to reference Damski C, Morris KV. Targeted small noncoding RNA-directed gene activation in human cells. Methods Mol Biol. 2014;1173:1–10.CrossRefPubMed Damski C, Morris KV. Targeted small noncoding RNA-directed gene activation in human cells. Methods Mol Biol. 2014;1173:1–10.CrossRefPubMed
25.
go back to reference Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6.CrossRefPubMed Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6.CrossRefPubMed
26.
go back to reference Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 2015;11:1110–22.CrossRefPubMedPubMedCentral Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 2015;11:1110–22.CrossRefPubMedPubMedCentral
27.
go back to reference Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.CrossRefPubMed Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.CrossRefPubMed
28.
go back to reference Cai B, Song XQ, Cai JP, Zhang S. HOTAIR: a cancer-related long non-coding RNA. Neoplasma. 2014;61:379–91.CrossRefPubMed Cai B, Song XQ, Cai JP, Zhang S. HOTAIR: a cancer-related long non-coding RNA. Neoplasma. 2014;61:379–91.CrossRefPubMed
Metadata
Title
Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/HOTAIR signaling pathway
Authors
Xiaohong Yang
En Luo
Xin Liu
Bin Han
Xiaoping Yu
Xiaoli Peng
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2465-0

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine