Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Lymphangiogenesis in Gastric Cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis

Authors: Hongxia Chen, Runnian Guan, Yupeng Lei, Jianyong Chen, Qi Ge, Xiaoshen Zhang, Ruoxu Dou, Hongyuan Chen, Hao Liu, Xiaolong Qi, Xiaodong Zhou, Changyan Chen

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Lymphangiogenesis plays a significant role in metastasis and recurrence of gastric cancer. There is no report yet focusing on the modulation of VEGF pathway and lymphangiogenesis of gastric cancer by targeting Akt/mTOR pathway. This study aims to demonstrate the relationship between Akt/mTOR pathway and VEGF-C/-D in gastric cancer.

Methods

We collected surgically resected gastric adenocarcinoma specimens from 55 consented patients. Immunohistochemistry staining of p-Akt, p-mTOR, VEGF-C, VEGF-D were performed and scored by two independent pathologists. The results were presented as staining intensity and positive staining cell rate. We also measured lymphatic vessel density (LVD) by D2-40 staining. Different dosages of p-Akt inhibitor LY294002 (12.5 μM, 25 μM, 50 μM) and p-mTOR inhibitor Rapamycin (25 nM, 50 nM, 100 nM) were given to gastric cancer cell line SGC-7901 in vitro. The inhibition rate of cell growth was tested by MTT at 24 h, 48 h and 72 h, respectively and protein expressions of Akt, p-Akt, mTOR, p-mTOR, VEGF-C and VEGF-D were examined by Western blot.

Results

The positive staining rates of p-Akt, p-mTOR, VEGF-C and VEGF-D in 55 gastric cancer clinical specimens were 74.54%, 85.45%, 72.73% and 58.18%. p-Akt and p-mTOR were positively correlated with VEGF-C and VEGF-D (p < 0.01). The LVD increased with incremental tendency of staining intensity of p-Akt, p-mTOR, VEGF-C and VEGF-D. LY294002 or Rapamycin significantly suppressed SGC-7901 cell growth and the inhibition rate was dose and time dependent (p < 0.001). In addition, the protein expression of p-Akt and p-mTOR were positively correlated with that of VEGF-C and VEGF-D (p < 0.05).

Conclusions

The level of LVD in gastric cancer specimens was significant higher than that of normal gastric tissue and was positively correlated with p-Akt, p-mTOR, VEGF-C and VEGF-D. Inhibition of p-Akt and p-mTOR, in vitro, decreased tumor cell VEGF-C and VEGF-D significantly. Therefore, we concluded that lymphangiogenesis of gastric cancer might be related to Akt/mTOR-VEGF-C/VEGF-D axis.
Literature
1.
2.
go back to reference Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 2011;71:7061–70.CrossRefPubMed Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 2011;71:7061–70.CrossRefPubMed
4.
go back to reference Brar SS, Mahar AL, Helyer LK, Swallow C, Law C, Paszat L, et al. Processes of care in the multidisciplinary treatment of gastric cancer: results of a RAND/UCLA expert panel. JAMA Surg. 2014;149:18–25.CrossRefPubMed Brar SS, Mahar AL, Helyer LK, Swallow C, Law C, Paszat L, et al. Processes of care in the multidisciplinary treatment of gastric cancer: results of a RAND/UCLA expert panel. JAMA Surg. 2014;149:18–25.CrossRefPubMed
5.
go back to reference Cunningham D, Chua YJ. East meets west in the treatment of gastric cancer. N Engl J Med. 2007;357:1863–5.CrossRefPubMed Cunningham D, Chua YJ. East meets west in the treatment of gastric cancer. N Engl J Med. 2007;357:1863–5.CrossRefPubMed
6.
go back to reference Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC, Ardipradja K, et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell. 2012;21:181–95.CrossRefPubMed Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC, Ardipradja K, et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell. 2012;21:181–95.CrossRefPubMed
7.
go back to reference Ko YH, Jung CK, Lee MA, Byun JH, Kang JH, Lee KY, et al. Clinical significance of vascular endothelial growth factors (VEGF)-C and -D in resected non-small cell lung cancer. Cancer Res Treat. 2008;40:133–40.CrossRefPubMedPubMedCentral Ko YH, Jung CK, Lee MA, Byun JH, Kang JH, Lee KY, et al. Clinical significance of vascular endothelial growth factors (VEGF)-C and -D in resected non-small cell lung cancer. Cancer Res Treat. 2008;40:133–40.CrossRefPubMedPubMedCentral
8.
go back to reference He Y. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic Eendothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 2005;65:4739–46.CrossRefPubMed He Y. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic Eendothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 2005;65:4739–46.CrossRefPubMed
9.
go back to reference Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget. 2014;5:11873–5.CrossRefPubMedPubMedCentral Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget. 2014;5:11873–5.CrossRefPubMedPubMedCentral
10.
go back to reference Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, et al. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol. 2010;177:2124–33.CrossRefPubMedPubMedCentral Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, et al. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol. 2010;177:2124–33.CrossRefPubMedPubMedCentral
11.
go back to reference Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98:726–33.CrossRefPubMed Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98:726–33.CrossRefPubMed
12.
go back to reference Scartozzi M, Giampieri R, Maccaroni E, Mandolesi A, Biagetti S, Alfonsi S, et al. Phosphorylated AKT and MAPK expression in primary tumours and in corresponding metastases and clinical outcome in colorectal cancer patients receiving irinotecan-cetuximab. J Transl Med. 2012;10:71.CrossRefPubMedPubMedCentral Scartozzi M, Giampieri R, Maccaroni E, Mandolesi A, Biagetti S, Alfonsi S, et al. Phosphorylated AKT and MAPK expression in primary tumours and in corresponding metastases and clinical outcome in colorectal cancer patients receiving irinotecan-cetuximab. J Transl Med. 2012;10:71.CrossRefPubMedPubMedCentral
13.
go back to reference Heikkinen T, Greco D, Pelttari LM, Tommiska J, Vahteristo P, Heikkilä P, et al. Variants on the promoter region of PTEN affect breast cancer progression and patient survival. Breast Cancer Res. 2011;13:R130.CrossRefPubMedPubMedCentral Heikkinen T, Greco D, Pelttari LM, Tommiska J, Vahteristo P, Heikkilä P, et al. Variants on the promoter region of PTEN affect breast cancer progression and patient survival. Breast Cancer Res. 2011;13:R130.CrossRefPubMedPubMedCentral
14.
go back to reference Xu W, Huang JJ, Cheung PC. Extract of pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS One. 2012;7:e34406.CrossRefPubMedPubMedCentral Xu W, Huang JJ, Cheung PC. Extract of pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS One. 2012;7:e34406.CrossRefPubMedPubMedCentral
15.
go back to reference Zhou XD, Chen HX, Guan RN, Lei YP, Shu X, Zhu Y, et al. Protein kinase B phosphorylation correlates with vascular endothelial growth factor A and microvessel density ingastric adenocarcinoma. J Int Med Res. 2012;40:2124–34.CrossRefPubMed Zhou XD, Chen HX, Guan RN, Lei YP, Shu X, Zhu Y, et al. Protein kinase B phosphorylation correlates with vascular endothelial growth factor A and microvessel density ingastric adenocarcinoma. J Int Med Res. 2012;40:2124–34.CrossRefPubMed
16.
go back to reference Murakami D, Tsujitani S, Osaki T, Saito H, Katano K, Tatebe S, et al. Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer. 2007;10:45–51.CrossRefPubMed Murakami D, Tsujitani S, Osaki T, Saito H, Katano K, Tatebe S, et al. Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer. 2007;10:45–51.CrossRefPubMed
17.
go back to reference Shi J, Yao D, Liu W, Wang N, Lv H, Zhang G, et al. Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer. BMC Cancer. 2012;12:50.CrossRefPubMedPubMedCentral Shi J, Yao D, Liu W, Wang N, Lv H, Zhang G, et al. Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer. BMC Cancer. 2012;12:50.CrossRefPubMedPubMedCentral
18.
go back to reference Wang XL, Fang JP, Tang RY, Chen XM. Different significance between intratumoral and peritumoral lymphatic vessel density in gastric cancer: a retrospective study of 123 cases. BMC Cancer. 2010;10:299.CrossRefPubMedPubMedCentral Wang XL, Fang JP, Tang RY, Chen XM. Different significance between intratumoral and peritumoral lymphatic vessel density in gastric cancer: a retrospective study of 123 cases. BMC Cancer. 2010;10:299.CrossRefPubMedPubMedCentral
19.
go back to reference Han FH, Li HM, Zheng DH, He YL, Zhan WH. The effect of the expression of vascular endothelial growth factor (VEGF)-C and VEGF receptor-3 on the clinical outcome in patients with gastric carcinoma. Eur J Surg Oncol. 2010;36:1172–9.CrossRefPubMed Han FH, Li HM, Zheng DH, He YL, Zhan WH. The effect of the expression of vascular endothelial growth factor (VEGF)-C and VEGF receptor-3 on the clinical outcome in patients with gastric carcinoma. Eur J Surg Oncol. 2010;36:1172–9.CrossRefPubMed
20.
go back to reference Wang TB, Deng MH, Qiu WS, Dong WG. Association of serum vascular endothelial growth factor-C and lymphatic vessel density with lymph node metastasis and prognosis of patients with gastric cancer. World J Gastroenterol. 2007;13:1794–7.CrossRefPubMedPubMedCentral Wang TB, Deng MH, Qiu WS, Dong WG. Association of serum vascular endothelial growth factor-C and lymphatic vessel density with lymph node metastasis and prognosis of patients with gastric cancer. World J Gastroenterol. 2007;13:1794–7.CrossRefPubMedPubMedCentral
21.
go back to reference Tsirlis TD, Kostakis A, Papastratis G, Masselou K, Vlachos I, Papachristodoulou A, et al. Predictive significance of preoperative serum VEGF-C and VEGF-D, independently and combined with Ca19-9, for the presence of malignancy and lymph node metastasis in patients with gastric cancer. J Surg Oncol. 2010;102:699–703.CrossRefPubMed Tsirlis TD, Kostakis A, Papastratis G, Masselou K, Vlachos I, Papachristodoulou A, et al. Predictive significance of preoperative serum VEGF-C and VEGF-D, independently and combined with Ca19-9, for the presence of malignancy and lymph node metastasis in patients with gastric cancer. J Surg Oncol. 2010;102:699–703.CrossRefPubMed
22.
go back to reference Yu G, Wang J, Chen Y, Wang X, Pan J, Li G, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of chinese patients with gastric cancer. Clin Cancer Res. 2009;15:1821–9.CrossRefPubMed Yu G, Wang J, Chen Y, Wang X, Pan J, Li G, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of chinese patients with gastric cancer. Clin Cancer Res. 2009;15:1821–9.CrossRefPubMed
23.
go back to reference Onogawa S, Kitadai Y, Amioka T, Kodama M, Cho S, Kuroda T, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in early gastric carcinoma: correlation with clinicopathological parameters. Cancer Lett. 2005;226:85–90.CrossRefPubMed Onogawa S, Kitadai Y, Amioka T, Kodama M, Cho S, Kuroda T, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in early gastric carcinoma: correlation with clinicopathological parameters. Cancer Lett. 2005;226:85–90.CrossRefPubMed
24.
go back to reference Arigami T, Natsugoe S, Uenosono Y, Yanagita S, Ehi K, Arima H, et al. Vascular endothelial growth factor-C and -D expression correlates with lymph node micrometastasis in pN0 early gastric cancer. J Surg Oncol. 2009;99:148–53.CrossRefPubMed Arigami T, Natsugoe S, Uenosono Y, Yanagita S, Ehi K, Arima H, et al. Vascular endothelial growth factor-C and -D expression correlates with lymph node micrometastasis in pN0 early gastric cancer. J Surg Oncol. 2009;99:148–53.CrossRefPubMed
25.
go back to reference Shin JY, Kim JO, Lee SK, Chae HS, Kang JH. LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells. BMC Cancer. 2010;10:425.CrossRefPubMedPubMedCentral Shin JY, Kim JO, Lee SK, Chae HS, Kang JH. LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells. BMC Cancer. 2010;10:425.CrossRefPubMedPubMedCentral
26.
go back to reference Yao C, Liu J, Shao L. Rapamycin inhibits the proliferation and apoptosis of gastric cancer cells by down regulating the expression of survivin. Hepatogastroenterology. 2011;58:1075–80.PubMed Yao C, Liu J, Shao L. Rapamycin inhibits the proliferation and apoptosis of gastric cancer cells by down regulating the expression of survivin. Hepatogastroenterology. 2011;58:1075–80.PubMed
27.
go back to reference Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene. 2010;29:2517–27.CrossRefPubMedPubMedCentral Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene. 2010;29:2517–27.CrossRefPubMedPubMedCentral
28.
go back to reference Wen J, Fu AF, Chen LJ, Xie XJ, Yang GL, Chen XC, et al. Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. Int J Cancer. 2009;124:2709–18.CrossRefPubMed Wen J, Fu AF, Chen LJ, Xie XJ, Yang GL, Chen XC, et al. Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. Int J Cancer. 2009;124:2709–18.CrossRefPubMed
29.
go back to reference Shinriki S, Jono H, Ueda M, Ota K, Ota T, Sueyoshi T, et al. Interleukin-6 signaling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma. J Pathol. 2011;225:142–50.CrossRefPubMed Shinriki S, Jono H, Ueda M, Ota K, Ota T, Sueyoshi T, et al. Interleukin-6 signaling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma. J Pathol. 2011;225:142–50.CrossRefPubMed
Metadata
Title
Lymphangiogenesis in Gastric Cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis
Authors
Hongxia Chen
Runnian Guan
Yupeng Lei
Jianyong Chen
Qi Ge
Xiaoshen Zhang
Ruoxu Dou
Hongyuan Chen
Hao Liu
Xiaolong Qi
Xiaodong Zhou
Changyan Chen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1109-0

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine