Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL

Authors: Isabelle Bartram, Ulrike Erben, Jutta Ortiz-Tanchez, Katja Blunert, Cornelia Schlee, Martin Neumann, Sandra Heesch, Claudia D. Baldus

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL.

Methods

Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study.

Results

IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient–limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53.

Conclusion

This study revealed a proliferation inhibiting effect of IGFBP7 by G0/G1 arrest and a drug resistance-inducing effect of IGFBP7 against vincristine and asparaginase in T-ALL. These results provide a model for the previously observed association between high IGFBP7 expression and chemotherapy failure in T-ALL patients. Since the resistance against vincristine was abolished by IGF1-R inhibition, IGFBP7 could serve as biomarker for patients who may benefit from therapies including IGF1-R inhibitors in combination with chemotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gökbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Semin Hematol. 2009;46:64–75.CrossRefPubMed Gökbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Semin Hematol. 2009;46:64–75.CrossRefPubMed
2.
go back to reference Hunault M, Harousseau J-L, Delain M, Truchan-Graczyk M, Cahn J-Y, Witz F, et al. Better outcome of adult acute lymphoblastic leukemia after early genoidentical allogeneic bone marrow transplantation (BMT) than after late high-dose therapy and autologous BMT: a GOELAMS trial. Blood. 2004;104:3028–37.CrossRefPubMed Hunault M, Harousseau J-L, Delain M, Truchan-Graczyk M, Cahn J-Y, Witz F, et al. Better outcome of adult acute lymphoblastic leukemia after early genoidentical allogeneic bone marrow transplantation (BMT) than after late high-dose therapy and autologous BMT: a GOELAMS trial. Blood. 2004;104:3028–37.CrossRefPubMed
4.
go back to reference Hwa V, Oh Y, Rosenfeld R. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20:761–87.PubMed Hwa V, Oh Y, Rosenfeld R. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20:761–87.PubMed
5.
go back to reference Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol - Endocrinol Metab. 2000;278:E967–76.PubMed Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol - Endocrinol Metab. 2000;278:E967–76.PubMed
6.
go back to reference Ingermann AR, Yang Y, Han J, Mikami A, Garza AE, Mohanraj L, et al. Identification of a Novel Cell Death Receptor Mediating IGFBP-3-induced Antitumor Effects in Breast and Prostate Cancer. J Biol Chem. 2010;285:30233–46.CrossRefPubMedPubMedCentral Ingermann AR, Yang Y, Han J, Mikami A, Garza AE, Mohanraj L, et al. Identification of a Novel Cell Death Receptor Mediating IGFBP-3-induced Antitumor Effects in Breast and Prostate Cancer. J Biol Chem. 2010;285:30233–46.CrossRefPubMedPubMedCentral
7.
go back to reference Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC. Nuclear import of insulin-like growth factor-binding protein-3 and −5 is mediated by the importin beta subunit. J Biol Chem. 2000;275:23462–70.CrossRefPubMed Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC. Nuclear import of insulin-like growth factor-binding protein-3 and −5 is mediated by the importin beta subunit. J Biol Chem. 2000;275:23462–70.CrossRefPubMed
8.
go back to reference Azar WJ, Zivkovic S, Werther GA, Russo VC. IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene. 2014;33:578–88.CrossRefPubMed Azar WJ, Zivkovic S, Werther GA, Russo VC. IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene. 2014;33:578–88.CrossRefPubMed
9.
go back to reference Landberg G, Ostlund H, Nielsen NH, Roos G, Emdin S, Burger AM, et al. Downregulation of the potential suppressor gene IGFBP-rP1 in human breast cancer is associated with inactivation of the retinoblastoma protein, cyclin E overexpression and increased proliferation in estrogen receptor negative tumors. Oncogene. 2001;20:3497–505.CrossRefPubMed Landberg G, Ostlund H, Nielsen NH, Roos G, Emdin S, Burger AM, et al. Downregulation of the potential suppressor gene IGFBP-rP1 in human breast cancer is associated with inactivation of the retinoblastoma protein, cyclin E overexpression and increased proliferation in estrogen receptor negative tumors. Oncogene. 2001;20:3497–505.CrossRefPubMed
10.
go back to reference Ruan W, Xu E, Xu F, Ma Y, Deng H, Huang Q, et al. IGFBP7 Plays a Potential Tumor Suppressor Role in Colorectal Carciogenesis. Cancer Biol Ther. 2007;6:354–9.CrossRefPubMed Ruan W, Xu E, Xu F, Ma Y, Deng H, Huang Q, et al. IGFBP7 Plays a Potential Tumor Suppressor Role in Colorectal Carciogenesis. Cancer Biol Ther. 2007;6:354–9.CrossRefPubMed
11.
go back to reference Tomimaru Y, Enguchi H, Wada H, Kobayashi S, Marubashi S, Tanemura M, et al. IGFBP7 downregulation is associated with tumor supression and clinical outcome in heptocellular carcinoma. Int J Cancer. 2012;130:319–27.CrossRefPubMed Tomimaru Y, Enguchi H, Wada H, Kobayashi S, Marubashi S, Tanemura M, et al. IGFBP7 downregulation is associated with tumor supression and clinical outcome in heptocellular carcinoma. Int J Cancer. 2012;130:319–27.CrossRefPubMed
12.
go back to reference Chen D, Siddiq A, Emdad L, Rajasekaran D, Gredler R, Shen X-N, et al. Insulin-like growth factor-binding protein-7 (IGFBP7): a promising gene therapeutic for hepatocellular carcinoma (HCC). Mol Ther. 2013;21:758–66.CrossRefPubMedPubMedCentral Chen D, Siddiq A, Emdad L, Rajasekaran D, Gredler R, Shen X-N, et al. Insulin-like growth factor-binding protein-7 (IGFBP7): a promising gene therapeutic for hepatocellular carcinoma (HCC). Mol Ther. 2013;21:758–66.CrossRefPubMedPubMedCentral
13.
go back to reference Chen R-Y, Chen H-X, Lin J-X, She W-B, Jiang P, Xu L, et al. In-vivo transfection of pcDNA3.1-IGFBP7 inhibits melanoma growth in mice through apoptosis induction and VEGF downexpression. J Exp Clin Cancer Res. 2010;29:13.CrossRefPubMedPubMedCentral Chen R-Y, Chen H-X, Lin J-X, She W-B, Jiang P, Xu L, et al. In-vivo transfection of pcDNA3.1-IGFBP7 inhibits melanoma growth in mice through apoptosis induction and VEGF downexpression. J Exp Clin Cancer Res. 2010;29:13.CrossRefPubMedPubMedCentral
14.
go back to reference Chen R-Y, Chen H-X, Jian P, Xu L, Li J, Fan Y-M, et al. Intratumoral injection of pEGFC1-IGFBP7 inhibits malignant melanoma growth in C57BL/6 J mice by inducing apoptosis and down-regulating VEGF expression. Oncol Rep. 2010;23:981–8.PubMed Chen R-Y, Chen H-X, Jian P, Xu L, Li J, Fan Y-M, et al. Intratumoral injection of pEGFC1-IGFBP7 inhibits malignant melanoma growth in C57BL/6 J mice by inducing apoptosis and down-regulating VEGF expression. Oncol Rep. 2010;23:981–8.PubMed
15.
go back to reference Heesch S, Schlee C, Neumann M, Stroux A, Kühnl A, Schwartz S, et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia. Leukemia. 2010;24:1429–36.CrossRefPubMed Heesch S, Schlee C, Neumann M, Stroux A, Kühnl A, Schwartz S, et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia. Leukemia. 2010;24:1429–36.CrossRefPubMed
16.
go back to reference Benatar T, Yang W, Amemiya Y, Evdokimova V, Kahn H, Holloway C, et al. IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways. Breast Cancer Res Treat. 2012;133:563–73.CrossRefPubMed Benatar T, Yang W, Amemiya Y, Evdokimova V, Kahn H, Holloway C, et al. IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways. Breast Cancer Res Treat. 2012;133:563–73.CrossRefPubMed
17.
go back to reference Vizioli MG, Sensi M, Miranda C, Cleris L, Formelli F, Anania MC, et al. IGFBP7: an oncosuppressor gene in thyroid carcinogenesis. Oncogene. 2010;29:3835–44.CrossRefPubMed Vizioli MG, Sensi M, Miranda C, Cleris L, Formelli F, Anania MC, et al. IGFBP7: an oncosuppressor gene in thyroid carcinogenesis. Oncogene. 2010;29:3835–44.CrossRefPubMed
18.
go back to reference Zuo S, Liu C, Wang J, Wang F, Xu W, Cui S, et al. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol. 2012;138:1045–55.CrossRefPubMed Zuo S, Liu C, Wang J, Wang F, Xu W, Cui S, et al. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol. 2012;138:1045–55.CrossRefPubMed
19.
go back to reference Ma Y, Lu B, Ruan W, Wang H, Lin J, Hu H, et al. Tumor suppressor gene insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) induces senescence-like growth arrest in colorectal cancer cells. Exp Mol Pathol. 2008;85:141–5.CrossRefPubMed Ma Y, Lu B, Ruan W, Wang H, Lin J, Hu H, et al. Tumor suppressor gene insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) induces senescence-like growth arrest in colorectal cancer cells. Exp Mol Pathol. 2008;85:141–5.CrossRefPubMed
20.
go back to reference Hu S, Chen R, Man X, Feng X, Cen J, Gu W, et al. Function and expression of insulin-like growth factor-binding protein 7 (IGFBP7) gene in childhood acute myeloid leukemia. Pediatr Hematol Oncol. 2011;28:279–87.CrossRefPubMed Hu S, Chen R, Man X, Feng X, Cen J, Gu W, et al. Function and expression of insulin-like growth factor-binding protein 7 (IGFBP7) gene in childhood acute myeloid leukemia. Pediatr Hematol Oncol. 2011;28:279–87.CrossRefPubMed
21.
go back to reference Laranjeira AB, De Vasconcellos JF, Sodek L, Spago MC, Fornazim MC, Tone LG, et al. IGFBP7 Participates in the Reciprocal Interaction between Acute Lymphoblastic Leukemia and BM Stromal Cells and in Leukemia Resistance to Asparaginase. Leukemia. 2012;26:1001–11.CrossRefPubMed Laranjeira AB, De Vasconcellos JF, Sodek L, Spago MC, Fornazim MC, Tone LG, et al. IGFBP7 Participates in the Reciprocal Interaction between Acute Lymphoblastic Leukemia and BM Stromal Cells and in Leukemia Resistance to Asparaginase. Leukemia. 2012;26:1001–11.CrossRefPubMed
22.
go back to reference Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, et al. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res. 2009;33:817–22.CrossRefPubMed Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, et al. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res. 2009;33:817–22.CrossRefPubMed
23.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.CrossRefPubMed Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.CrossRefPubMed
24.
go back to reference Haferlach T, Kohlmann A, Wieczorek L, Basso G, Te KG, Béné M-C, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010;28:2529–37.CrossRefPubMed Haferlach T, Kohlmann A, Wieczorek L, Basso G, Te KG, Béné M-C, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010;28:2529–37.CrossRefPubMed
25.
go back to reference Anderson MA, Huang D, Roberts A. Targeting BCL2 for the Treatment of Lymphoid Malignancies. Semin Hematol. 2014;51:219–27.CrossRefPubMed Anderson MA, Huang D, Roberts A. Targeting BCL2 for the Treatment of Lymphoid Malignancies. Semin Hematol. 2014;51:219–27.CrossRefPubMed
26.
go back to reference Choi CH, Sung CO, Kim HJ, Lee YY, Song SY, Song T, et al. Overexpression of annexin A4 is associated with chemoresistance in papillary serous adenocarcinoma of the ovary. Hum Pathol. 2013;44:1017–23.CrossRefPubMed Choi CH, Sung CO, Kim HJ, Lee YY, Song SY, Song T, et al. Overexpression of annexin A4 is associated with chemoresistance in papillary serous adenocarcinoma of the ovary. Hum Pathol. 2013;44:1017–23.CrossRefPubMed
27.
go back to reference Roszak J, Smok-Pienia̧zek A, Nocuń M, Stȩpnik M. Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: Focus on PI3K/Akt signaling pathway. Chem Biol Interact. 2013;205:198–211.CrossRefPubMed Roszak J, Smok-Pienia̧zek A, Nocuń M, Stȩpnik M. Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: Focus on PI3K/Akt signaling pathway. Chem Biol Interact. 2013;205:198–211.CrossRefPubMed
28.
go back to reference Trbusek M, Malcikova J. TP53 aberrations in chronic lymphocytic leukemia. Adv Exp Med Biol. 2013;792:109–31.CrossRefPubMed Trbusek M, Malcikova J. TP53 aberrations in chronic lymphocytic leukemia. Adv Exp Med Biol. 2013;792:109–31.CrossRefPubMed
29.
go back to reference Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of Death-Associated Protein Kinase 1 (DAPK1) in Chronic Lymphocytic Leukemia. Cell. 2007;129:879–90.CrossRefPubMedPubMedCentral Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of Death-Associated Protein Kinase 1 (DAPK1) in Chronic Lymphocytic Leukemia. Cell. 2007;129:879–90.CrossRefPubMedPubMedCentral
30.
go back to reference Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program. 2009;1:253-361 Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program. 2009;1:253-361
31.
go back to reference Lee DW, Zhang K, Ning ZQ, Raabe EH, Tintner S, Wieland R, et al. Proliferation-associated SNF2-like gene (PASG): A SNF2 family member altered in leukemia. Cancer Res. 2000;60:3612–22.PubMed Lee DW, Zhang K, Ning ZQ, Raabe EH, Tintner S, Wieland R, et al. Proliferation-associated SNF2-like gene (PASG): A SNF2 family member altered in leukemia. Cancer Res. 2000;60:3612–22.PubMed
32.
go back to reference Shah MA, Schwartz GK. Cell Cycle-mediated Drug Resistance : An Emerging Concept in Cancer Therapy Cell Cycle-mediated Drug Resistance : An Emerging Concept in. Clin Cancer Res. 2001;7:2168–81.PubMed Shah MA, Schwartz GK. Cell Cycle-mediated Drug Resistance : An Emerging Concept in Cancer Therapy Cell Cycle-mediated Drug Resistance : An Emerging Concept in. Clin Cancer Res. 2001;7:2168–81.PubMed
33.
go back to reference Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal. 2012;5:ra92.CrossRefPubMed Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal. 2012;5:ra92.CrossRefPubMed
34.
go back to reference Verhagen HJ, De Leeuw DC, Roemer MG, Denkers F, Pouwels W, Rutten A, et al. IGFBP7 induces apoptosis of acute myeloid leukemia cells and synergizes with chemotherapy in suppression of leukemia cell survival. Cell Death Dis. 2014;5:e1300.CrossRefPubMedPubMedCentral Verhagen HJ, De Leeuw DC, Roemer MG, Denkers F, Pouwels W, Rutten A, et al. IGFBP7 induces apoptosis of acute myeloid leukemia cells and synergizes with chemotherapy in suppression of leukemia cell survival. Cell Death Dis. 2014;5:e1300.CrossRefPubMedPubMedCentral
35.
go back to reference He Y, Zhang J, Zheng J, Du W, Xiao H, Liu W, et al. The Insulin-Like Growth Factor-1 Receptor Kinase Inhibitor, NVP-ADW742, Suppresses Survival and Resistance to Chemotherapy in Acute Myeloid Leukemia Cells. Oncol Res Featur Preclin Clin Cancer Ther. 2010;19:35–43. He Y, Zhang J, Zheng J, Du W, Xiao H, Liu W, et al. The Insulin-Like Growth Factor-1 Receptor Kinase Inhibitor, NVP-ADW742, Suppresses Survival and Resistance to Chemotherapy in Acute Myeloid Leukemia Cells. Oncol Res Featur Preclin Clin Cancer Ther. 2010;19:35–43.
36.
go back to reference Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T, et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia. 2007;21:886–96.PubMed Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T, et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia. 2007;21:886–96.PubMed
37.
go back to reference Doepfner KT, Spertini O, Arcaro A. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia. 2007;21:1921–30.CrossRefPubMed Doepfner KT, Spertini O, Arcaro A. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia. 2007;21:1921–30.CrossRefPubMed
38.
go back to reference Gualberto A, Pollak M. Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene. 2009;28:3009–21.CrossRefPubMed Gualberto A, Pollak M. Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene. 2009;28:3009–21.CrossRefPubMed
39.
go back to reference Medyouf H, Gusscott S, Wang H, Tseng J-C, Wai C, Nemirovsky O, et al. High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med. 2011;208:1809–22.CrossRefPubMedPubMedCentral Medyouf H, Gusscott S, Wang H, Tseng J-C, Wai C, Nemirovsky O, et al. High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med. 2011;208:1809–22.CrossRefPubMedPubMedCentral
40.
go back to reference Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.CrossRefPubMed Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.CrossRefPubMed
41.
go back to reference Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol. 1995;7:541–6.CrossRefPubMed Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol. 1995;7:541–6.CrossRefPubMed
42.
go back to reference Singleton JR, Dixit VM, Feldman EL. Type I Insulin-like Growth Factor Receptor Activation Regulates Apoptotic Proteins. J Biol Chem. 1996;271:31791–4.CrossRefPubMed Singleton JR, Dixit VM, Feldman EL. Type I Insulin-like Growth Factor Receptor Activation Regulates Apoptotic Proteins. J Biol Chem. 1996;271:31791–4.CrossRefPubMed
43.
go back to reference Basu S, Rajakaruna S, Menko AS. Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2012;287:8384–97.CrossRefPubMedPubMedCentral Basu S, Rajakaruna S, Menko AS. Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2012;287:8384–97.CrossRefPubMedPubMedCentral
Metadata
Title
Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL
Authors
Isabelle Bartram
Ulrike Erben
Jutta Ortiz-Tanchez
Katja Blunert
Cornelia Schlee
Martin Neumann
Sandra Heesch
Claudia D. Baldus
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1677-z

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine