Skip to main content
Top
Published in: BMC Neurology 1/2020

Open Access 01-12-2020 | Magnetic Resonance Imaging | Research article

Detection of gray matter microstructural changes in Alzheimer’s disease continuum using fiber orientation

Authors: Peter Lee, Hang-Rai Kim, Yong Jeong, for the Alzheimer’s Disease Neuroimaging Initiative

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

This study aimed to investigate feasible gray matter microstructural biomarkers with high sensitivity for early Alzheimer’s disease (AD) detection. We propose a diffusion tensor imaging (DTI) measure, “radiality”, as an early AD biomarker. It is the dot product of the normal vector of the cortical surface and primary diffusion direction, which reflects the fiber orientation within the cortical column.

Methods

We analyzed neuroimages from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, including images from 78 cognitively normal (CN), 50 early mild cognitive impairment (EMCI), 34 late mild cognitive impairment (LMCI), and 39 AD patients. We then evaluated the cortical thickness (CTh), mean diffusivity (MD), which are conventional AD magnetic resonance imaging (MRI) biomarkers, and the amount of accumulated amyloid and tau using positron emission tomography (PET). Radiality was projected on the gray matter surface to compare and validate the changes with different stages alongside other neuroimage biomarkers.

Results

The results revealed decreased radiality primarily in the entorhinal, insula, frontal, and temporal cortex with further progression of disease. In particular, radiality could delineate the difference between the CN and EMCI groups, while the other biomarkers could not. We examined the relationship between radiality and other biomarkers to validate its pathological evidence in AD. Overall, radiality showed a high association with conventional biomarkers. Additional ROI analysis revealed the dynamics of AD-related changes as stages onward.

Conclusion

Radiality in cortical gray matter showed AD-specific changes and relevance with other conventional AD biomarkers with high sensitivity. Moreover, radiality could identify the group differences seen in EMCI, representative of changes in early AD, which supports its superiority in early diagnosis compared to that possible with conventional biomarkers. We provide evidence of structural changes with cognitive impairment and suggest radiality as a sensitive biomarker for identifying early AD.
Appendix
Available only for authorised users
Literature
11.
go back to reference Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M. Quantification of brain gray matter damage in different ms phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol. 2002;23(6):985–8 PMID 12063230.PubMed Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M. Quantification of brain gray matter damage in different ms phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol. 2002;23(6):985–8 PMID 12063230.PubMed
17.
go back to reference Lee P, Kim HR, Jeong Y. Disruption of gray matter microstructure in Alzheimer’s disease continuum using fiber orientation international conference of Korean dementia association. Vol. 133; 2019. p. FP-0007. Lee P, Kim HR, Jeong Y. Disruption of gray matter microstructure in Alzheimer’s disease continuum using fiber orientation international conference of Korean dementia association. Vol. 133; 2019. p. FP-0007.
31.
go back to reference Ghosh A, Shatz CJ. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development. 1993;117(3):1031–47 PMID 8325233.PubMed Ghosh A, Shatz CJ. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development. 1993;117(3):1031–47 PMID 8325233.PubMed
33.
go back to reference Hardy RJ, Friedrich VL Jr. Oligodendrocyte progenitors are generated throughout the embryonic mouse brain, but differentiate in restricted foci. Development. 1996;122(7):2059–69 PMID 8681787.PubMed Hardy RJ, Friedrich VL Jr. Oligodendrocyte progenitors are generated throughout the embryonic mouse brain, but differentiate in restricted foci. Development. 1996;122(7):2059–69 PMID 8681787.PubMed
37.
Metadata
Title
Detection of gray matter microstructural changes in Alzheimer’s disease continuum using fiber orientation
Authors
Peter Lee
Hang-Rai Kim
Yong Jeong
for the Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-01939-2

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue