Skip to main content
Top
Published in: BMC Medical Imaging 1/2023

Open Access 01-12-2023 | Prostate Cancer | Research

Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI

Authors: Hasan Khanfari, Saeed Mehranfar, Mohsen Cheki, Mahmoud Mohammadi Sadr, Samir Moniri, Sahel Heydarheydari, Seyed Masoud Rezaeijo

Published in: BMC Medical Imaging | Issue 1/2023

Login to get access

Abstract

Background

The purpose of this study is to investigate the use of radiomics and deep features obtained from multiparametric magnetic resonance imaging (mpMRI) for grading prostate cancer. We propose a novel approach called multi-flavored feature extraction or tensor, which combines four mpMRI images using eight different fusion techniques to create 52 images or datasets for each patient. We evaluate the effectiveness of this approach in grading prostate cancer and compare it to traditional methods.

Methods

We used the PROSTATEx-2 dataset consisting of 111 patients’ images from T2W-transverse, T2W-sagittal, DWI, and ADC images. We used eight fusion techniques to merge T2W, DWI, and ADC images, namely Laplacian Pyramid, Ratio of the low-pass pyramid, Discrete Wavelet Transform, Dual-Tree Complex Wavelet Transform, Curvelet Transform, Wavelet Fusion, Weighted Fusion, and Principal Component Analysis. Prostate cancer images were manually segmented, and radiomics features were extracted using the Pyradiomics library in Python. We also used an Autoencoder for deep feature extraction. We used five different feature sets to train the classifiers: all radiomics features, all deep features, radiomics features linked with PCA, deep features linked with PCA, and a combination of radiomics and deep features. We processed the data, including balancing, standardization, PCA, correlation, and Least Absolute Shrinkage and Selection Operator (LASSO) regression. Finally, we used nine classifiers to classify different Gleason grades.

Results

Our results show that the SVM classifier with deep features linked with PCA achieved the most promising results, with an AUC of 0.94 and a balanced accuracy of 0.79. Logistic regression performed best when using only the deep features, with an AUC of 0.93 and balanced accuracy of 0.76. Gaussian Naive Bayes had lower performance compared to other classifiers, while KNN achieved high performance using deep features linked with PCA. Random Forest performed well with the combination of deep features and radiomics features, achieving an AUC of 0.94 and balanced accuracy of 0.76. The Voting classifiers showed higher performance when using only the deep features, with Voting 2 achieving the highest performance, with an AUC of 0.95 and balanced accuracy of 0.78.

Conclusion

Our study concludes that the proposed multi-flavored feature extraction or tensor approach using radiomics and deep features can be an effective method for grading prostate cancer. Our findings suggest that deep features may be more effective than radiomics features alone in accurately classifying prostate cancer.
Literature
1.
go back to reference Ryman-Tubb T, Lothion-Roy JH, Metzler VM, Harris AE, Robinson BD, Rizvanov AA, et al. Comparative pathology of dog and human prostate cancer. Vet Med Sci. 2022;8(1):110–20.CrossRefPubMed Ryman-Tubb T, Lothion-Roy JH, Metzler VM, Harris AE, Robinson BD, Rizvanov AA, et al. Comparative pathology of dog and human prostate cancer. Vet Med Sci. 2022;8(1):110–20.CrossRefPubMed
2.
go back to reference Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, et al. Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol. 2010;11(8):725–32.CrossRefPubMedPubMedCentral Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, et al. Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol. 2010;11(8):725–32.CrossRefPubMedPubMedCentral
3.
go back to reference Cuzick J, Thorat MA, Andriole G, Brawley OW, Brown PH, Culig Z, et al. Prevention and early detection of prostate cancer. Lancet Oncol. 2014;15(11):e484–92.CrossRefPubMedPubMedCentral Cuzick J, Thorat MA, Andriole G, Brawley OW, Brown PH, Culig Z, et al. Prevention and early detection of prostate cancer. Lancet Oncol. 2014;15(11):e484–92.CrossRefPubMedPubMedCentral
4.
go back to reference Rezaeijo SM, Jafarpoor SN, Fatan MS, Tahmasebi MJB. Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model. Quant Imaging Med Surg. 2022;12(10):4786–804.CrossRefPubMedPubMedCentral Rezaeijo SM, Jafarpoor SN, Fatan MS, Tahmasebi MJB. Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model. Quant Imaging Med Surg. 2022;12(10):4786–804.CrossRefPubMedPubMedCentral
5.
go back to reference Rezaeijo SM, Hashemi B, Mofid B, Bakhshandeh M, Mahdavi A, Hashemi MS. The feasibility of a dose painting procedure to treat prostate cancer based on mpMR images and hierarchical clustering. Radiat Oncol. 2021;16(1):1–16.CrossRef Rezaeijo SM, Hashemi B, Mofid B, Bakhshandeh M, Mahdavi A, Hashemi MS. The feasibility of a dose painting procedure to treat prostate cancer based on mpMR images and hierarchical clustering. Radiat Oncol. 2021;16(1):1–16.CrossRef
6.
go back to reference Rezaeijo SM, Entezari Zarch H, Mojtahedi H, Chegeni N, Danyaei A. Feasibility study of synthetic DW-MR images with different b values compared with real DW-MR images: quantitative assessment of three models based-deep learning including CycleGAN, Pix2PiX, and DC2Anet. Appl Magn Reson. 2022;53(10):1407–29.CrossRef Rezaeijo SM, Entezari Zarch H, Mojtahedi H, Chegeni N, Danyaei A. Feasibility study of synthetic DW-MR images with different b values compared with real DW-MR images: quantitative assessment of three models based-deep learning including CycleGAN, Pix2PiX, and DC2Anet. Appl Magn Reson. 2022;53(10):1407–29.CrossRef
7.
go back to reference Selley S, Donovan J, Faulkner A, Coast J, Gillatt D. Diagnosis, management and screening of early localised prostate cancer. Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews. 1997. Selley S, Donovan J, Faulkner A, Coast J, Gillatt D. Diagnosis, management and screening of early localised prostate cancer. Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews. 1997.
8.
go back to reference Fiorentino V, Martini M, Dell’Aquila M, Musarra T, Orticelli E, Larocca LM, et al. Histopathological ratios to predict gleason score agreement between biopsy and radical prostatectomy. Diagnostics. 2020;11(1):10.CrossRefPubMedPubMedCentral Fiorentino V, Martini M, Dell’Aquila M, Musarra T, Orticelli E, Larocca LM, et al. Histopathological ratios to predict gleason score agreement between biopsy and radical prostatectomy. Diagnostics. 2020;11(1):10.CrossRefPubMedPubMedCentral
9.
go back to reference Montironi R, Santoni M, Mazzucchelli R, Burattini L, Berardi R, Galosi AB, et al. Prostate cancer: from Gleason scoring to prognostic grade grouping. Expert Rev Anticancer Ther. 2016;16(4):433–40.CrossRefPubMed Montironi R, Santoni M, Mazzucchelli R, Burattini L, Berardi R, Galosi AB, et al. Prostate cancer: from Gleason scoring to prognostic grade grouping. Expert Rev Anticancer Ther. 2016;16(4):433–40.CrossRefPubMed
10.
go back to reference Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging. 2015;15(1):1–14.CrossRef Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging. 2015;15(1):1–14.CrossRef
11.
go back to reference Viswanath SE, Chirra PV, Yim MC, Rofsky NM, Purysko AS, Rosen MA, et al. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study. BMC Med Imaging. 2019;19(1):1–12.CrossRef Viswanath SE, Chirra PV, Yim MC, Rofsky NM, Purysko AS, Rosen MA, et al. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study. BMC Med Imaging. 2019;19(1):1–12.CrossRef
12.
go back to reference Khalvati F, Zhang J, Chung AG, Shafiee MJ, Wong A, Haider MA. MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection. BMC Med Imaging. 2018;18:1–14.CrossRef Khalvati F, Zhang J, Chung AG, Shafiee MJ, Wong A, Haider MA. MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection. BMC Med Imaging. 2018;18:1–14.CrossRef
13.
go back to reference Valerio M, Donaldson I, Emberton M, Ehdaie B, Hadaschik BA, Marks LS, et al. Detection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic review. Eur Urol. 2015;68(1):8–19.CrossRefPubMed Valerio M, Donaldson I, Emberton M, Ehdaie B, Hadaschik BA, Marks LS, et al. Detection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic review. Eur Urol. 2015;68(1):8–19.CrossRefPubMed
14.
go back to reference Wang J, Wu C-J, Bao M-L, Zhang J, Wang X-N, Zhang Y-D. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur Radiol. 2017;27:4082–90.CrossRefPubMed Wang J, Wu C-J, Bao M-L, Zhang J, Wang X-N, Zhang Y-D. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur Radiol. 2017;27:4082–90.CrossRefPubMed
15.
go back to reference Wang Z, Liu C, Cheng D, Wang L, Yang X, Cheng K-T. Automated detection of clinically significant prostate cancer in mp-MRI images based on an end-to-end deep neural network. IEEE Trans Med Imaging. 2018;37(5):1127–39.CrossRefPubMed Wang Z, Liu C, Cheng D, Wang L, Yang X, Cheng K-T. Automated detection of clinically significant prostate cancer in mp-MRI images based on an end-to-end deep neural network. IEEE Trans Med Imaging. 2018;37(5):1127–39.CrossRefPubMed
16.
go back to reference Winkel DJ, Breit H-C, Shi B, Boll DT, Seifert H-H, Wetterauer C. Predicting clinically significant prostate cancer from quantitative image features including compressed sensing radial MRI of prostate perfusion using machine learning: comparison with PI-RADS v2 assessment scores. Quant Imaging Med Surg. 2020;10(4):808.CrossRefPubMedPubMedCentral Winkel DJ, Breit H-C, Shi B, Boll DT, Seifert H-H, Wetterauer C. Predicting clinically significant prostate cancer from quantitative image features including compressed sensing radial MRI of prostate perfusion using machine learning: comparison with PI-RADS v2 assessment scores. Quant Imaging Med Surg. 2020;10(4):808.CrossRefPubMedPubMedCentral
17.
go back to reference Castillo TJM, Arif M, Niessen WJ, Schoots IG, Veenland JF. Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications. Cancers. 2020;12(6):1606.CrossRef Castillo TJM, Arif M, Niessen WJ, Schoots IG, Veenland JF. Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications. Cancers. 2020;12(6):1606.CrossRef
18.
go back to reference Arif M, Starmans MPA, Niessen WJ, Bangma CH, Schoots IG, Veenland JF. Classification of clinically significant prostate cancer on multi-parametric MRI: A validation study comparing deep learning and radiomics. Cancers. 2022;14(1):12. Arif M, Starmans MPA, Niessen WJ, Bangma CH, Schoots IG, Veenland JF. Classification of clinically significant prostate cancer on multi-parametric MRI: A validation study comparing deep learning and radiomics. Cancers. 2022;14(1):12.
19.
go back to reference Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging. 2020;20:1–10.CrossRef Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging. 2020;20:1–10.CrossRef
20.
go back to reference Bernatz S, Ackermann J, Mandel P, Kaltenbach B, Zhdanovich Y, Harter PN, et al. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features. Eur Radiol. 2020;30:6757–69.CrossRefPubMedPubMedCentral Bernatz S, Ackermann J, Mandel P, Kaltenbach B, Zhdanovich Y, Harter PN, et al. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features. Eur Radiol. 2020;30:6757–69.CrossRefPubMedPubMedCentral
21.
go back to reference Liu B, Cheng J, Guo DJ, He XJ, Luo YD, Zeng Y, et al. Prediction of prostate cancer aggressiveness with a combination of radiomics and machine learning-based analysis of dynamic contrast-enhanced MRI. Clin Radiol. 2019;74(11):896-e1.CrossRef Liu B, Cheng J, Guo DJ, He XJ, Luo YD, Zeng Y, et al. Prediction of prostate cancer aggressiveness with a combination of radiomics and machine learning-based analysis of dynamic contrast-enhanced MRI. Clin Radiol. 2019;74(11):896-e1.CrossRef
22.
go back to reference Donisi L, Cesarelli G, Castaldo A, De Lucia DR, Nessuno F, Spadarella G, et al. A combined radiomics and machine learning approach to distinguish clinically significant prostate lesions on a publicly available mri dataset. J Imaging. 2021;7(10):215.CrossRefPubMedPubMedCentral Donisi L, Cesarelli G, Castaldo A, De Lucia DR, Nessuno F, Spadarella G, et al. A combined radiomics and machine learning approach to distinguish clinically significant prostate lesions on a publicly available mri dataset. J Imaging. 2021;7(10):215.CrossRefPubMedPubMedCentral
23.
go back to reference Zhang L, Zhe X, Tang M, Zhang J, Ren J, Zhang X, et al. Predicting the grade of prostate cancer based on a biparametric MRI radiomics signature. Contrast Media Mol Imaging. 2021;2021:7830909.CrossRefPubMedPubMedCentral Zhang L, Zhe X, Tang M, Zhang J, Ren J, Zhang X, et al. Predicting the grade of prostate cancer based on a biparametric MRI radiomics signature. Contrast Media Mol Imaging. 2021;2021:7830909.CrossRefPubMedPubMedCentral
24.
go back to reference Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting Gleason score of prostate cancer patients using radiomic analysis. Front Oncol. 2018;8:630.CrossRefPubMedPubMedCentral Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting Gleason score of prostate cancer patients using radiomic analysis. Front Oncol. 2018;8:630.CrossRefPubMedPubMedCentral
25.
go back to reference Gong L, Xu M, Fang M, He B, Li H, Fang X, et al. The potential of prostate gland radiomic features in identifying the Gleason score. Comput Biol Med. 2022;144:105318.CrossRefPubMed Gong L, Xu M, Fang M, He B, Li H, Fang X, et al. The potential of prostate gland radiomic features in identifying the Gleason score. Comput Biol Med. 2022;144:105318.CrossRefPubMed
26.
go back to reference Bertelli E, Mercatelli L, Marzi C, Pachetti E, Baccini M, Barucci A, et al. Machine and deep learning prediction of prostate cancer aggressiveness using multiparametric mri. Front Oncol. 2022;11:802964.CrossRefPubMedPubMedCentral Bertelli E, Mercatelli L, Marzi C, Pachetti E, Baccini M, Barucci A, et al. Machine and deep learning prediction of prostate cancer aggressiveness using multiparametric mri. Front Oncol. 2022;11:802964.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Ullah Z, Usman M, Jeon M, Gwak J. Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation. Inf Sci. 2022;608:1541–56.CrossRef Ullah Z, Usman M, Jeon M, Gwak J. Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation. Inf Sci. 2022;608:1541–56.CrossRef
29.
go back to reference Ullah Z, Usman M, Gwak J. MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. Expert Syst Appl. 2023;216:119475.CrossRefPubMedPubMedCentral Ullah Z, Usman M, Gwak J. MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. Expert Syst Appl. 2023;216:119475.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for doctors. J Stomatol Oral Maxillofac Surg. 2019;120(4):279–88.CrossRefPubMed Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for doctors. J Stomatol Oral Maxillofac Surg. 2019;120(4):279–88.CrossRefPubMed
32.
go back to reference Rahmim A, Toosi A, Salmanpour MR, Dubljevic N, Janzen I, Shiri I, et al. Tensor radiomics: paradigm for systematic incorporation of multi-flavoured radiomics feature. 2022. arXiv preprint arXiv:220306314. Rahmim A, Toosi A, Salmanpour MR, Dubljevic N, Janzen I, Shiri I, et al. Tensor radiomics: paradigm for systematic incorporation of multi-flavoured radiomics feature. 2022. arXiv preprint arXiv:220306314.
33.
go back to reference Bhattacharya I, Khandwala YS, Vesal S, Shao W, Yang Q, Soerensen SJC, et al. A review of artificial intelligence in prostate cancer detection on imaging. Ther Adv Urol. 2022;14:17562872221128792.CrossRef Bhattacharya I, Khandwala YS, Vesal S, Shao W, Yang Q, Soerensen SJC, et al. A review of artificial intelligence in prostate cancer detection on imaging. Ther Adv Urol. 2022;14:17562872221128792.CrossRef
34.
go back to reference Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021;21(1):1–11.CrossRef Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021;21(1):1–11.CrossRef
35.
go back to reference Harmon SA, Tuncer S, Sanford T, Choyke PL, Türkbey B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019;25(3):183.CrossRefPubMedPubMedCentral Harmon SA, Tuncer S, Sanford T, Choyke PL, Türkbey B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019;25(3):183.CrossRefPubMedPubMedCentral
36.
go back to reference Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 2020;21(2):233–41.CrossRefPubMed Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 2020;21(2):233–41.CrossRefPubMed
Metadata
Title
Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI
Authors
Hasan Khanfari
Saeed Mehranfar
Mohsen Cheki
Mahmoud Mohammadi Sadr
Samir Moniri
Sahel Heydarheydari
Seyed Masoud Rezaeijo
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2023
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-023-01140-0

Other articles of this Issue 1/2023

BMC Medical Imaging 1/2023 Go to the issue