Skip to main content
Top
Published in: BMC Medical Imaging 1/2022

Open Access 01-12-2022 | Magnetic Resonance Imaging | Research

AbdomenNet: deep neural network for abdominal organ segmentation in epidemiologic imaging studies

Authors: Anne-Marie Rickmann, Jyotirmay Senapati, Oksana Kovalenko, Annette Peters, Fabian Bamberg, Christian Wachinger

Published in: BMC Medical Imaging | Issue 1/2022

Login to get access

Abstract

Background

Whole-body imaging has recently been added to large-scale epidemiological studies providing novel opportunities for investigating abdominal organs. However, the segmentation of these organs is required beforehand, which is time consuming, particularly on such a large scale.

Methods

We introduce AbdomentNet, a deep neural network for the automated segmentation of abdominal organs on two-point Dixon MRI scans. A pre-processing pipeline enables to process MRI scans from different imaging studies, namely the German National Cohort, UK Biobank, and Kohorte im Raum Augsburg. We chose a total of 61 MRI scans across the three studies for training an ensemble of segmentation networks, which segment eight abdominal organs. Our network presents a novel combination of octave convolutions and squeeze and excitation layers, as well as training with stochastic weight averaging.

Results

Our experiments demonstrate that it is beneficial to combine data from different imaging studies to train deep neural networks in contrast to training separate networks. Combining the water and opposed-phase contrasts of the Dixon sequence as input channels, yields the highest segmentation accuracy, compared to single contrast inputs. The mean Dice similarity coefficient is above 0.9 for larger organs liver, spleen, and kidneys, and 0.71 and 0.74 for gallbladder and pancreas, respectively.

Conclusions

Our fully automated pipeline provides high-quality segmentations of abdominal organs across population studies. In contrast, a network that is only trained on a single dataset does not generalize well to other datasets.
Literature
1.
go back to reference Bamberg F, Kauczor H-U, Weckbach S, Schlett CL, Forsting M, Ladd SC, Greiser KH, Weber M-A, Schulz-Menger J, Niendorf T. Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology. 2015;277(1):206–20.CrossRef Bamberg F, Kauczor H-U, Weckbach S, Schlett CL, Forsting M, Ladd SC, Greiser KH, Weber M-A, Schulz-Menger J, Niendorf T. Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology. 2015;277(1):206–20.CrossRef
2.
go back to reference Streit F, Zillich L, Frank J, Kleineidam L, Wagner M, Baune BT, Klinger-König J, Grabe HJ, Pabst A, Riedel-Heller SG, Schmiedek F, Schmidt B, Erhardt A, Deckert J, Investigators N, Rietschel M, Berger K, Düsseldorf S, Leipzig S, Berlin-Süd S. Lifetime and current depression in the German national cohort (NAKO). World J Biol Psychiatry. 2022. https://doi.org/10.1080/15622975.2021.2014152 (PMID: 34870540).CrossRefPubMed Streit F, Zillich L, Frank J, Kleineidam L, Wagner M, Baune BT, Klinger-König J, Grabe HJ, Pabst A, Riedel-Heller SG, Schmiedek F, Schmidt B, Erhardt A, Deckert J, Investigators N, Rietschel M, Berger K, Düsseldorf S, Leipzig S, Berlin-Süd S. Lifetime and current depression in the German national cohort (NAKO). World J Biol Psychiatry. 2022. https://​doi.​org/​10.​1080/​15622975.​2021.​2014152 (PMID: 34870540).CrossRefPubMed
3.
go back to reference Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell JD, Boultwood C, Collins R, Conroy MC. The UK biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun. 2020;11(1):1–12.CrossRef Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell JD, Boultwood C, Collins R, Conroy MC. The UK biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun. 2020;11(1):1–12.CrossRef
4.
go back to reference Hegenscheid K, Kühn JP, Völzke H, Biffar R, Hosten N, Puls R. Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based ship study. In: RöFo-Fortschritte Auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren, vol. 181; 2009. pp. 748–59. \(\copyright\) Georg Thieme Verlag KG Stuttgart \(\cdot\) New York. Hegenscheid K, Kühn JP, Völzke H, Biffar R, Hosten N, Puls R. Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based ship study. In: RöFo-Fortschritte Auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren, vol. 181; 2009. pp. 748–59. \(\copyright\) Georg Thieme Verlag KG Stuttgart \(\cdot\) New York.
5.
go back to reference Bamberg F, Hetterich H, Rospleszcz S, Lorbeer R, Auweter SD, Schlett CL, Schafnitzel A, Bayerl C, Schindler A, Saam T. Subclinical disease burden as assessed by whole-body MRI in subjects with prediabetes, subjects with diabetes, and normal control subjects from the general population: the KORA-MRI study. Diabetes. 2017;66(1):158–69.CrossRef Bamberg F, Hetterich H, Rospleszcz S, Lorbeer R, Auweter SD, Schlett CL, Schafnitzel A, Bayerl C, Schindler A, Saam T. Subclinical disease burden as assessed by whole-body MRI in subjects with prediabetes, subjects with diabetes, and normal control subjects from the general population: the KORA-MRI study. Diabetes. 2017;66(1):158–69.CrossRef
6.
go back to reference von Krüchten R, Lorbeer R, Müller-Peltzer K, Rospleszcz S, Storz C, Askani E, Kulka C, Schuppert C, Rathmann W, Peters A, Bamberg F, Schlett CL, Mujaj B. Association between adipose tissue depots and dyslipidemia: the KORA-MRI population-based study. Nutrients. 2022;14(4):797.CrossRef von Krüchten R, Lorbeer R, Müller-Peltzer K, Rospleszcz S, Storz C, Askani E, Kulka C, Schuppert C, Rathmann W, Peters A, Bamberg F, Schlett CL, Mujaj B. Association between adipose tissue depots and dyslipidemia: the KORA-MRI population-based study. Nutrients. 2022;14(4):797.CrossRef
7.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.CrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.CrossRef
8.
go back to reference Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90.CrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90.CrossRef
9.
go back to reference Wachinger C, Rieckmann A, Pölsterl S. Detect and correct bias in multi-site neuroimaging datasets. Med Image Anal. 2021;67: 101879.CrossRef Wachinger C, Rieckmann A, Pölsterl S. Detect and correct bias in multi-site neuroimaging datasets. Med Image Anal. 2021;67: 101879.CrossRef
10.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; 2015. pp. 234–41. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; 2015. pp. 234–41.
11.
go back to reference Roy AG, Conjeti S, Navab N, Wachinger C. Quicknat: a fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage. 2019;186:713–27.CrossRef Roy AG, Conjeti S, Navab N, Wachinger C. Quicknat: a fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage. 2019;186:713–27.CrossRef
12.
go back to reference Chen Y, Fan H, Xu B, Yan Z, Kalantidis Y, Rohrbach M, Yan S, Feng J. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. pp. 3435–44. Chen Y, Fan H, Xu B, Yan Z, Kalantidis Y, Rohrbach M, Yan S, Feng J. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. pp. 3435–44.
13.
go back to reference Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: CVPR; 2018. pp. 7132–41. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: CVPR; 2018. pp. 7132–41.
14.
go back to reference Roy AG, Navab N, Wachinger C. Recalibrating fully convolutional networks with spatial and channel ‘squeeze and excitation’ blocks. IEEE TMI. 2019;38(2):540–9. Roy AG, Navab N, Wachinger C. Recalibrating fully convolutional networks with spatial and channel ‘squeeze and excitation’ blocks. IEEE TMI. 2019;38(2):540–9.
15.
go back to reference Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG. Averaging weights leads to wider optima and better generalization; 2018. arXiv:1803.05407. Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG. Averaging weights leads to wider optima and better generalization; 2018. arXiv:​1803.​05407.
16.
go back to reference Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146–65.CrossRef Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146–65.CrossRef
17.
go back to reference Pohle R, Toennies KD. Segmentation of medical images using adaptive region growing. In: Medical imaging 2001: image processing, vol. 4322. SPIE; 2001. pp. 1337–46. Pohle R, Toennies KD. Segmentation of medical images using adaptive region growing. In: Medical imaging 2001: image processing, vol. 4322. SPIE; 2001. pp. 1337–46.
18.
go back to reference Park H, Bland PH, Meyer CR. Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans Med Imaging. 2003;22(4):483–92.CrossRef Park H, Bland PH, Meyer CR. Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans Med Imaging. 2003;22(4):483–92.CrossRef
19.
go back to reference Roth HR, Oda H, Hayashi Y, Oda M, Shimizu N, Fujiwara M, Misawa K, Mori K. Hierarchical 3d fully convolutional networks for multi-organ segmentation; 2017. arXiv:1704.06382. Roth HR, Oda H, Hayashi Y, Oda M, Shimizu N, Fujiwara M, Misawa K, Mori K. Hierarchical 3d fully convolutional networks for multi-organ segmentation; 2017. arXiv:​1704.​06382.
20.
go back to reference Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med Image Anal. 2019;55:88–102.CrossRef Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med Image Anal. 2019;55:88–102.CrossRef
21.
go back to reference Zhou Y, Li Z, Bai S, Wang C, Chen X, Han M, Fishman E, Yuille AL. Prior-aware neural network for partially-supervised multi-organ segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. pp. 10672–81. Zhou Y, Li Z, Bai S, Wang C, Chen X, Han M, Fishman E, Yuille AL. Prior-aware neural network for partially-supervised multi-organ segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. pp. 10672–81.
22.
go back to reference Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging. 2018;37(8):1822–34.CrossRef Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging. 2018;37(8):1822–34.CrossRef
23.
go back to reference Chen Y, Ruan D, Xiao J, Wang L, Sun B, Saouaf R, Yang W, Li D, Fan Z. Fully automated multi-organ segmentation in abdominal magnetic resonance imaging with deep neural networks. Med Phys. 2020;47(10):4971.CrossRef Chen Y, Ruan D, Xiao J, Wang L, Sun B, Saouaf R, Yang W, Li D, Fan Z. Fully automated multi-organ segmentation in abdominal magnetic resonance imaging with deep neural networks. Med Phys. 2020;47(10):4971.CrossRef
24.
go back to reference Bobo MF, Bao S, Huo Y, Yao Y, Virostko J, Plassard AJ, Lyu I, Assad A, Abramson RG, Hilmes MA. Fully convolutional neural networks improve abdominal organ segmentation. In: Medical imaging 2018: image processing, vol. 10574. International Society for Optics and Photonics; 2018. p. 105742. Bobo MF, Bao S, Huo Y, Yao Y, Virostko J, Plassard AJ, Lyu I, Assad A, Abramson RG, Hilmes MA. Fully convolutional neural networks improve abdominal organ segmentation. In: Medical imaging 2018: image processing, vol. 10574. International Society for Optics and Photonics; 2018. p. 105742.
25.
go back to reference Rickmann A-M, Roy AG, Sarasua I, Wachinger C. Recalibrating 3d convnets with project & excite. IEEE Trans Med Imaging. 2020;39(7):2461–71.CrossRef Rickmann A-M, Roy AG, Sarasua I, Wachinger C. Recalibrating 3d convnets with project & excite. IEEE Trans Med Imaging. 2020;39(7):2461–71.CrossRef
26.
go back to reference Senapati J, Roy AG, Pölsterl S, Gutmann D, Gatidis S, Schlett C, Peters A, Bamberg F, Wachinger C. Bayesian neural networks for uncertainty estimation of imaging biomarkers. In: International workshop on machine learning in medical imaging. Springer; 2020. pp. 270–80. Senapati J, Roy AG, Pölsterl S, Gutmann D, Gatidis S, Schlett C, Peters A, Bamberg F, Wachinger C. Bayesian neural networks for uncertainty estimation of imaging biomarkers. In: International workshop on machine learning in medical imaging. Springer; 2020. pp. 270–80.
27.
go back to reference Jimenez-del-Toro O, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodríguez A, Goksel O, Jakab A. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans Med Imaging. 2016;35(11):2459–75.CrossRef Jimenez-del-Toro O, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodríguez A, Goksel O, Jakab A. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans Med Imaging. 2016;35(11):2459–75.CrossRef
28.
go back to reference Kavur AE, Gezer NS, Barış M, Aslan S, Conze P-H, Groza V, Pham DD, Chatterjee S, Ernst P, Özkan S, et al. Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal. 2020;69: 101950.CrossRef Kavur AE, Gezer NS, Barış M, Aslan S, Conze P-H, Groza V, Pham DD, Chatterjee S, Ernst P, Özkan S, et al. Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal. 2020;69: 101950.CrossRef
29.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2020;18:1–9. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2020;18:1–9.
30.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4itk: improved n3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4itk: improved n3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.CrossRef
31.
go back to reference Basty N, Liu Y, Cule M, Thomas EL, Bell JD, Whitcher B. Image processing and quality control for abdominal magnetic resonance imaging in the UK biobank; 2020. arXiv:2007.01251. Basty N, Liu Y, Cule M, Thomas EL, Bell JD, Whitcher B. Image processing and quality control for abdominal magnetic resonance imaging in the UK biobank; 2020. arXiv:​2007.​01251.
32.
go back to reference Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In: ICCV; 2015. pp. 1520–8. Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In: ICCV; 2015. pp. 1520–8.
33.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 4700–8. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 4700–8.
34.
go back to reference He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision; 2015. pp. 1026–34. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision; 2015. pp. 1026–34.
35.
go back to reference Wu Y, He K. Group normalization. In: Proceedings of the European conference on computer vision (ECCV); 2018. pp. 3–19. Wu Y, He K. Group normalization. In: Proceedings of the European conference on computer vision (ECCV); 2018. pp. 3–19.
36.
go back to reference Ulyanov D, Vedaldi A, Lempitsky V. Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: CVPR; 2017. pp. 6924–32. Ulyanov D, Vedaldi A, Lempitsky V. Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: CVPR; 2017. pp. 6924–32.
37.
go back to reference Estrada S, Lu R, Conjeti S, Orozco-Ruiz X, Panos-Willuhn J, Breteler MM, Reuter M. Fatsegnet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn Reson Med. 2020;83(4):1471–83.CrossRef Estrada S, Lu R, Conjeti S, Orozco-Ruiz X, Panos-Willuhn J, Breteler MM, Reuter M. Fatsegnet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn Reson Med. 2020;83(4):1471–83.CrossRef
Metadata
Title
AbdomenNet: deep neural network for abdominal organ segmentation in epidemiologic imaging studies
Authors
Anne-Marie Rickmann
Jyotirmay Senapati
Oksana Kovalenko
Annette Peters
Fabian Bamberg
Christian Wachinger
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2022
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-022-00893-4

Other articles of this Issue 1/2022

BMC Medical Imaging 1/2022 Go to the issue