Skip to main content
Top
Published in: BMC Infectious Diseases 1/2024

Open Access 01-12-2024 | Meningococcus | Research

Diverse proinflammatory response in pharyngeal epithelial cells upon interaction with Neisseria meningitidis carriage and invasive isolates

Authors: Alexander Persson, Therese Koivula, Susanne Jacobsson, Bianca Stenmark

Published in: BMC Infectious Diseases | Issue 1/2024

Login to get access

Abstract

Background

Invasive meningococcal disease (IMD), including sepsis and meningitis, can develop when Neisseria meningitidis bacteria breach the barrier and gain access to the circulation. While IMD is a rare outcome of bacterial exposure, colonization of the oropharynx is present in approximately 10% of the human population. This asymptomatic carriage can be long or short term, and it is unknown which determining factors regulate bacterial colonization. Despite descriptions of many bacterial virulence factors and recent advances in detailed genetic identification and characterization of bacteria, the factors mediating invasion and disease vs. asymptomatic carriage following bacterial colonization remain unknown. The pharyngeal epithelia play a role in the innate immune defense against pathogens, and the aim of this study was to investigate the proinflammatory response of pharyngeal epithelial cells following meningococcal exposure to describe the potential inflammatory mediation performed during the initial host‒pathogen interaction. Clinically relevant isolates of serogroups B, C, W and Y, derived from patients with meningococcal disease as well as asymptomatic carriers, were included in the study.

Results

The most potent cellular response with proinflammatory secretion of TNF, IL-6, CXCL8, CCL2, IL-1β and IL-18 was found in response to invasive serogroup B isolates. This potent response pattern was also mirrored by increased bacterial adhesion to cells as well as induced cell death. It was, however, only with serogroup B isolates where the most potent cellular response was toward the IMD isolates. In contrast, the most potent cellular response using serogroup Y isolates was directed toward the carriage isolates rather than the IMD isolates. In addition, by comparing isolates from outbreaks in Sweden (epidemiologically linked and highly genetically similar), we found the most potent proinflammatory response in cells exposed to carriage isolates rather than the IMD isolates.

Conclusion

Although certain expected correlations between host‒pathogen interactions and cellular proinflammatory responses were found using IMD serogroup B isolates, our data indicate that carriage isolates invoke stronger proinflammatory activation of the epithelial lining than IMD isolates.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007;369(9580):2196–210.PubMedCrossRef Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007;369(9580):2196–210.PubMedCrossRef
4.
go back to reference Cartwright KA, Stuart JM, Jones DM, Noah ND. The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect. 1987;99(3):591–601.PubMedPubMedCentralCrossRef Cartwright KA, Stuart JM, Jones DM, Noah ND. The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect. 1987;99(3):591–601.PubMedPubMedCentralCrossRef
5.
go back to reference Christensen H, May M, Bowen L, Hickman M, Trotter CL. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(12):853–61.PubMedCrossRef Christensen H, May M, Bowen L, Hickman M, Trotter CL. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(12):853–61.PubMedCrossRef
6.
go back to reference Olof S, Lorraine E, Berhane AI, Alexander P, Anders M, Sara TH, et al. Prevalence and persistence of Neisseria Meningitidis carriage in Swedish university students. Epidemiol Infect. 2023;151:e25.PubMedPubMedCentralCrossRef Olof S, Lorraine E, Berhane AI, Alexander P, Anders M, Sara TH, et al. Prevalence and persistence of Neisseria Meningitidis carriage in Swedish university students. Epidemiol Infect. 2023;151:e25.PubMedPubMedCentralCrossRef
7.
go back to reference Azeem MI, Tashani M, Badahdah AM, Heron L, Pedersen K, Jeoffreys N, et al. Surveillance of Australian Hajj pilgrims for carriage of potentially pathogenic bacteria: data from two pilot studies. World J Clin Cases. 2017;5(3):102–11.PubMedPubMedCentralCrossRef Azeem MI, Tashani M, Badahdah AM, Heron L, Pedersen K, Jeoffreys N, et al. Surveillance of Australian Hajj pilgrims for carriage of potentially pathogenic bacteria: data from two pilot studies. World J Clin Cases. 2017;5(3):102–11.PubMedPubMedCentralCrossRef
8.
go back to reference Memish ZA, Al-Tawfiq JA, Almasri M, Azhar EI, Yasir M, Al-Saeed MS, et al. Neisseria meningitidis nasopharyngeal carriage during the Hajj: a cohort study evaluating the need for ciprofloxacin prophylaxis. Vaccine. 2017;35(18):2473–8.PubMedCrossRef Memish ZA, Al-Tawfiq JA, Almasri M, Azhar EI, Yasir M, Al-Saeed MS, et al. Neisseria meningitidis nasopharyngeal carriage during the Hajj: a cohort study evaluating the need for ciprofloxacin prophylaxis. Vaccine. 2017;35(18):2473–8.PubMedCrossRef
9.
go back to reference Bidmos FA, Neal KR, Oldfield NJ, Turner DP, Ala’Aldeen DA, Bayliss CD. Persistence, replacement, and rapid clonal expansion of meningococcal carriage isolates in a 2008 university student cohort. J Clin Microbiol. 2011;49(2):506–12.PubMedPubMedCentralCrossRef Bidmos FA, Neal KR, Oldfield NJ, Turner DP, Ala’Aldeen DA, Bayliss CD. Persistence, replacement, and rapid clonal expansion of meningococcal carriage isolates in a 2008 university student cohort. J Clin Microbiol. 2011;49(2):506–12.PubMedPubMedCentralCrossRef
10.
go back to reference Ala’aldeen DA, Oldfield NJ, Bidmos FA, Abouseada NM, Ahmed NW, Turner DP, et al. Carriage of meningococci by university students, United Kingdom. Emerg Infect Dis. 2011;17(9):1762–3.PubMedPubMedCentralCrossRef Ala’aldeen DA, Oldfield NJ, Bidmos FA, Abouseada NM, Ahmed NW, Turner DP, et al. Carriage of meningococci by university students, United Kingdom. Emerg Infect Dis. 2011;17(9):1762–3.PubMedPubMedCentralCrossRef
11.
go back to reference Audry M, Robbe-Masselot C, Barnier JP, Gachet B, Saubamea B, Schmitt A, et al. Airway mucus restricts Neisseria meningitidis away from nasopharyngeal epithelial cells and protects the mucosa from inflammation. mSphere. 2019;4(6):e00494-e519.PubMedPubMedCentralCrossRef Audry M, Robbe-Masselot C, Barnier JP, Gachet B, Saubamea B, Schmitt A, et al. Airway mucus restricts Neisseria meningitidis away from nasopharyngeal epithelial cells and protects the mucosa from inflammation. mSphere. 2019;4(6):e00494-e519.PubMedPubMedCentralCrossRef
12.
go back to reference Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol. 2004;31(3):358–64.PubMedCrossRef Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol. 2004;31(3):358–64.PubMedCrossRef
14.
go back to reference Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95(16):9541–6.ADSPubMedPubMedCentralCrossRef Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95(16):9541–6.ADSPubMedPubMedCentralCrossRef
15.
go back to reference McCray PB Jr, Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol. 1997;16(3):343–9.PubMedCrossRef McCray PB Jr, Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol. 1997;16(3):343–9.PubMedCrossRef
16.
go back to reference Naumann M, Wessler S, Bartsch C, Wieland B, Meyer TF. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med. 1997;186(2):247–58.PubMedPubMedCentralCrossRef Naumann M, Wessler S, Bartsch C, Wieland B, Meyer TF. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med. 1997;186(2):247–58.PubMedPubMedCentralCrossRef
17.
go back to reference Placzkiewicz J, Adamczyk-Poplawska M, Kozlowska E, Kwiatek A. Both Neisseria gonorrhoeae and Neisseria sicca Induce Cytokine Secretion by Infected Human Cells, but Only Neisseria gonorrhoeae Upregulates the Expression of Long Non-Coding RNAs. Pathogens. 2022;11(4):394.PubMedPubMedCentralCrossRef Placzkiewicz J, Adamczyk-Poplawska M, Kozlowska E, Kwiatek A. Both Neisseria gonorrhoeae and Neisseria sicca Induce Cytokine Secretion by Infected Human Cells, but Only Neisseria gonorrhoeae Upregulates the Expression of Long Non-Coding RNAs. Pathogens. 2022;11(4):394.PubMedPubMedCentralCrossRef
18.
go back to reference Taha MK. Neisseria meningitidis induces the expression of the TNF-alpha gene in endothelial cells. Cytokine. 2000;12(1):21–5.PubMedCrossRef Taha MK. Neisseria meningitidis induces the expression of the TNF-alpha gene in endothelial cells. Cytokine. 2000;12(1):21–5.PubMedCrossRef
19.
go back to reference Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.ADSPubMedCrossRef Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.ADSPubMedCrossRef
20.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef
21.
go back to reference Idosa BA, Kelly A, Jacobsson S, Demirel I, Fredlund H, Sarndahl E, et al. Neisseria meningitidis-Induced Caspase-1 Activation in Human Innate Immune Cells Is LOS-Dependent. J Immunol Res. 2019;2019:6193186.PubMedPubMedCentralCrossRef Idosa BA, Kelly A, Jacobsson S, Demirel I, Fredlund H, Sarndahl E, et al. Neisseria meningitidis-Induced Caspase-1 Activation in Human Innate Immune Cells Is LOS-Dependent. J Immunol Res. 2019;2019:6193186.PubMedPubMedCentralCrossRef
22.
go back to reference Zughaier SM, Tzeng YL, Zimmer SM, Datta A, Carlson RW, Stephens DS. Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun. 2004;72(1):371–80.PubMedPubMedCentralCrossRef Zughaier SM, Tzeng YL, Zimmer SM, Datta A, Carlson RW, Stephens DS. Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun. 2004;72(1):371–80.PubMedPubMedCentralCrossRef
23.
go back to reference Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel “alarmin”? PLoS ONE. 2008;3(10):e3331.ADSPubMedPubMedCentralCrossRef Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel “alarmin”? PLoS ONE. 2008;3(10):e3331.ADSPubMedPubMedCentralCrossRef
24.
go back to reference Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, et al. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines. 2019;18(1):15–30.PubMedCrossRef Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, et al. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines. 2019;18(1):15–30.PubMedCrossRef
25.
go back to reference Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95(6):3140–5.ADSPubMedPubMedCentralCrossRef Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95(6):3140–5.ADSPubMedPubMedCentralCrossRef
26.
go back to reference MacLennan JM, Rodrigues CMC, Bratcher HB, Lekshmi A, Finn A, Oliver J, et al. Meningococcal carriage in periods of high and low invasive meningococcal disease incidence in the UK: comparison of UKMenCar1-4 cross-sectional survey results. Lancet Infect Dis. 2021;21(5):677–87.PubMedPubMedCentralCrossRef MacLennan JM, Rodrigues CMC, Bratcher HB, Lekshmi A, Finn A, Oliver J, et al. Meningococcal carriage in periods of high and low invasive meningococcal disease incidence in the UK: comparison of UKMenCar1-4 cross-sectional survey results. Lancet Infect Dis. 2021;21(5):677–87.PubMedPubMedCentralCrossRef
27.
go back to reference Peterson ME, Li Y, Shanks H, Mile R, Nair H, Kyaw MH, et al. Serogroup-specific meningococcal carriage by age group: a systematic review and meta-analysis. BMJ Open. 2019;9(4):e024343.PubMedPubMedCentralCrossRef Peterson ME, Li Y, Shanks H, Mile R, Nair H, Kyaw MH, et al. Serogroup-specific meningococcal carriage by age group: a systematic review and meta-analysis. BMJ Open. 2019;9(4):e024343.PubMedPubMedCentralCrossRef
28.
go back to reference Jacobsson S, Olcen P, Lofdahl M, Fredlund H, Molling P. Characteristics of Neisseria meningitidis isolates causing fatal disease. Scand J Infect Dis. 2008;40(9):734–44.PubMedCrossRef Jacobsson S, Olcen P, Lofdahl M, Fredlund H, Molling P. Characteristics of Neisseria meningitidis isolates causing fatal disease. Scand J Infect Dis. 2008;40(9):734–44.PubMedCrossRef
29.
go back to reference Karlsson J, Eichner H, Andersson C, Jacobsson S, Loh E. Novel hypercapsulation RNA thermosensor variants in Neisseria meningitidis and their association with invasive meningococcal disease: a genetic and phenotypic investigation and molecular epidemiological study. Lancet Microbe. 2020;1(8):e319–27.PubMedCrossRef Karlsson J, Eichner H, Andersson C, Jacobsson S, Loh E. Novel hypercapsulation RNA thermosensor variants in Neisseria meningitidis and their association with invasive meningococcal disease: a genetic and phenotypic investigation and molecular epidemiological study. Lancet Microbe. 2020;1(8):e319–27.PubMedCrossRef
30.
go back to reference Eriksson L, Stenmark B, Deghmane AE, ThulinHedberg S, Sall O, Fredlund H, et al. Difference in virulence between Neisseria meningitidis serogroups W and Y in transgenic mice. BMC Microbiol. 2020;20(1):92.PubMedPubMedCentralCrossRef Eriksson L, Stenmark B, Deghmane AE, ThulinHedberg S, Sall O, Fredlund H, et al. Difference in virulence between Neisseria meningitidis serogroups W and Y in transgenic mice. BMC Microbiol. 2020;20(1):92.PubMedPubMedCentralCrossRef
31.
go back to reference Sall O, Stenmark B, Jacobsson S, Eriksson L, ThulinHedberg S, Hertting O, et al. Atypical presentation of Neisseria meningitidis serogroup W disease is associated with the introduction of the 2013 strain. Epidemiol Infect. 2021;149:e126.PubMedPubMedCentralCrossRef Sall O, Stenmark B, Jacobsson S, Eriksson L, ThulinHedberg S, Hertting O, et al. Atypical presentation of Neisseria meningitidis serogroup W disease is associated with the introduction of the 2013 strain. Epidemiol Infect. 2021;149:e126.PubMedPubMedCentralCrossRef
32.
go back to reference Jacobsson S, Stenmark B, Hedberg ST, Molling P, Fredlund H. Neisseria meningitidis carriage in Swedish teenagers associated with the serogroup W outbreak at the World Scout Jamboree, Japan 2015. APMIS. 2018;126(4):337–41.PubMedCrossRef Jacobsson S, Stenmark B, Hedberg ST, Molling P, Fredlund H. Neisseria meningitidis carriage in Swedish teenagers associated with the serogroup W outbreak at the World Scout Jamboree, Japan 2015. APMIS. 2018;126(4):337–41.PubMedCrossRef
33.
go back to reference Sall O, Stenmark B, Glimaker M, Jacobsson S, Molling P, Olcen P, et al. Clinical presentation of invasive disease caused by Neisseria meningitidis serogroup Y in Sweden, 1995 to 2012. Epidemiol Infect. 2017;145(10):2137–43.PubMedPubMedCentralCrossRef Sall O, Stenmark B, Glimaker M, Jacobsson S, Molling P, Olcen P, et al. Clinical presentation of invasive disease caused by Neisseria meningitidis serogroup Y in Sweden, 1995 to 2012. Epidemiol Infect. 2017;145(10):2137–43.PubMedPubMedCentralCrossRef
34.
go back to reference Joseph B, Schneiker-Bekel S, Schramm-Gluck A, Blom J, Claus H, Linke B, et al. Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol. 2010;192(20):5363–77.PubMedPubMedCentralCrossRef Joseph B, Schneiker-Bekel S, Schramm-Gluck A, Blom J, Claus H, Linke B, et al. Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol. 2010;192(20):5363–77.PubMedPubMedCentralCrossRef
35.
go back to reference Robinson K, Taraktsoglou M, Rowe KS, Wooldridge KG, Ala’Aldeen DA. Secreted proteins from Neisseria meningitidis mediate differential human gene expression and immune activation. Cell Microbiol. 2004;6(10):927–38.PubMedCrossRef Robinson K, Taraktsoglou M, Rowe KS, Wooldridge KG, Ala’Aldeen DA. Secreted proteins from Neisseria meningitidis mediate differential human gene expression and immune activation. Cell Microbiol. 2004;6(10):927–38.PubMedCrossRef
36.
go back to reference Sokolova O, Heppel N, Jagerhuber R, Kim KS, Frosch M, Eigenthaler M, et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol. 2004;6(12):1153–66.PubMedCrossRef Sokolova O, Heppel N, Jagerhuber R, Kim KS, Frosch M, Eigenthaler M, et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol. 2004;6(12):1153–66.PubMedCrossRef
37.
go back to reference Wells DB, Tighe PJ, Wooldridge KG, Robinson K, Ala’ Aldeen DA. Differential gene expression during meningeal-meningococcal interaction: evidence for self-defense and early release of cytokines and chemokines. Infect Immun. 2001;69(4):2718–22.PubMedPubMedCentralCrossRef Wells DB, Tighe PJ, Wooldridge KG, Robinson K, Ala’ Aldeen DA. Differential gene expression during meningeal-meningococcal interaction: evidence for self-defense and early release of cytokines and chemokines. Infect Immun. 2001;69(4):2718–22.PubMedPubMedCentralCrossRef
38.
go back to reference Christodoulides M, Makepeace BL, Partridge KA, Kaur D, Fowler MI, Weller RO, et al. Interaction of Neisseria meningitidis with human meningeal cells induces the secretion of a distinct group of chemotactic, proinflammatory, and growth-factor cytokines. Infect Immun. 2002;70(8):4035–44.PubMedPubMedCentralCrossRef Christodoulides M, Makepeace BL, Partridge KA, Kaur D, Fowler MI, Weller RO, et al. Interaction of Neisseria meningitidis with human meningeal cells induces the secretion of a distinct group of chemotactic, proinflammatory, and growth-factor cytokines. Infect Immun. 2002;70(8):4035–44.PubMedPubMedCentralCrossRef
39.
go back to reference Nudel K, Massari P, Genco CA. Neisseria gonorrhoeae modulates cell death in human endocervical epithelial cells through export of exosome-associated cIAP2. Infect Immun. 2015;83(9):3410–7.PubMedPubMedCentralCrossRef Nudel K, Massari P, Genco CA. Neisseria gonorrhoeae modulates cell death in human endocervical epithelial cells through export of exosome-associated cIAP2. Infect Immun. 2015;83(9):3410–7.PubMedPubMedCentralCrossRef
40.
go back to reference Deghmane AE, El Kafsi H, Giorgini D, Abaza A, Taha MK. Late repression of NF-kappaB activity by invasive but not non-invasive meningococcal isolates is required to display apoptosis of epithelial cells. PLoS Pathog. 2011;7(12):e1002403.PubMedPubMedCentralCrossRef Deghmane AE, El Kafsi H, Giorgini D, Abaza A, Taha MK. Late repression of NF-kappaB activity by invasive but not non-invasive meningococcal isolates is required to display apoptosis of epithelial cells. PLoS Pathog. 2011;7(12):e1002403.PubMedPubMedCentralCrossRef
41.
go back to reference Massari P, Ho Y, Wetzler LM. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc Natl Acad Sci U S A. 2000;97(16):9070–5.ADSPubMedPubMedCentralCrossRef Massari P, Ho Y, Wetzler LM. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc Natl Acad Sci U S A. 2000;97(16):9070–5.ADSPubMedPubMedCentralCrossRef
42.
go back to reference Muller A, Gunther D, Dux F, Naumann M, Meyer TF, Rudel T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J. 1999;18(2):339–52.PubMedPubMedCentralCrossRef Muller A, Gunther D, Dux F, Naumann M, Meyer TF, Rudel T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J. 1999;18(2):339–52.PubMedPubMedCentralCrossRef
43.
go back to reference Deghmane AE, Veckerle C, Giorgini D, Hong E, Ruckly C, Taha MK. Differential modulation of TNF-alpha-induced apoptosis by Neisseria meningitidis. PLoS Pathog. 2009;5(5):e1000405.PubMedPubMedCentralCrossRef Deghmane AE, Veckerle C, Giorgini D, Hong E, Ruckly C, Taha MK. Differential modulation of TNF-alpha-induced apoptosis by Neisseria meningitidis. PLoS Pathog. 2009;5(5):e1000405.PubMedPubMedCentralCrossRef
44.
go back to reference Virji M, Kayhty H, Ferguson DJ, Alexandrescu C, Heckels JE, Moxon ER. The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol. 1991;5(8):1831–41.PubMedCrossRef Virji M, Kayhty H, Ferguson DJ, Alexandrescu C, Heckels JE, Moxon ER. The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol. 1991;5(8):1831–41.PubMedCrossRef
45.
go back to reference Taha MK, Morand PC, Pereira Y, Eugene E, Giorgini D, Larribe M, et al. Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol Microbiol. 1998;28(6):1153–63.PubMedCrossRef Taha MK, Morand PC, Pereira Y, Eugene E, Giorgini D, Larribe M, et al. Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol Microbiol. 1998;28(6):1153–63.PubMedCrossRef
46.
go back to reference Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol. 1993;10(3):499–510.PubMedCrossRef Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol. 1993;10(3):499–510.PubMedCrossRef
47.
go back to reference Takahashi H, Kim KS, Watanabe H. Differential in vitro infectious abilities of two common Japan-specific sequence-type (ST) clones of disease-associated ST-2032 and carrier-associated ST-2046 Neisseria meningitidis strains in human endothelial and epithelial cell lines. FEMS Immunol Med Microbiol. 2008;52(1):36–46.PubMedCrossRef Takahashi H, Kim KS, Watanabe H. Differential in vitro infectious abilities of two common Japan-specific sequence-type (ST) clones of disease-associated ST-2032 and carrier-associated ST-2046 Neisseria meningitidis strains in human endothelial and epithelial cell lines. FEMS Immunol Med Microbiol. 2008;52(1):36–46.PubMedCrossRef
48.
go back to reference Sofer-Sali N, Roif-Kaminsky D, Motro Y, Khalfin B, Avramovich E, Galor I, et al. Prevalence and characteristics of carriage of Neisseria meningitidis among young Israeli adults. Open Forum Infect Dis. 2022;9(10):ofac482.PubMedPubMedCentralCrossRef Sofer-Sali N, Roif-Kaminsky D, Motro Y, Khalfin B, Avramovich E, Galor I, et al. Prevalence and characteristics of carriage of Neisseria meningitidis among young Israeli adults. Open Forum Infect Dis. 2022;9(10):ofac482.PubMedPubMedCentralCrossRef
49.
go back to reference Guo P, Zhu B, Liang H, Gao W, Zhou G, Xu L, et al. Comparison of pathogenicity of invasive and carried meningococcal isolates of ST-4821 complex in China. Infect Immun. 2019;87(12):e00584-e619.PubMedPubMedCentralCrossRef Guo P, Zhu B, Liang H, Gao W, Zhou G, Xu L, et al. Comparison of pathogenicity of invasive and carried meningococcal isolates of ST-4821 complex in China. Infect Immun. 2019;87(12):e00584-e619.PubMedPubMedCentralCrossRef
50.
go back to reference Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.PubMedPubMedCentralCrossRef Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.PubMedPubMedCentralCrossRef
51.
go back to reference Sigurlasdottir S, Saroj SD, Eriksson OS, Eriksson J, Jonsson AB. Quantification of Neisseria meningitidis adherence to human epithelial cells by colony counting. Bio Protoc. 2018;8(3):e2709.PubMedPubMedCentralCrossRef Sigurlasdottir S, Saroj SD, Eriksson OS, Eriksson J, Jonsson AB. Quantification of Neisseria meningitidis adherence to human epithelial cells by colony counting. Bio Protoc. 2018;8(3):e2709.PubMedPubMedCentralCrossRef
Metadata
Title
Diverse proinflammatory response in pharyngeal epithelial cells upon interaction with Neisseria meningitidis carriage and invasive isolates
Authors
Alexander Persson
Therese Koivula
Susanne Jacobsson
Bianca Stenmark
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2024
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-024-09186-3

Other articles of this Issue 1/2024

BMC Infectious Diseases 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine