Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2019

Open Access 01-12-2019 | Migraine | Research article

C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system

Authors: Jacob C. A. Edvinsson, Karin Warfvinge, Diana N. Krause, Frank W. Blixt, Majid Sheykhzade, Lars Edvinsson, Kristian A. Haanes

Published in: The Journal of Headache and Pain | Issue 1/2019

Login to get access

Abstract

Background

Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1).

Methods

With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay.

Results

Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers.

Conclusion

We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Edvinsson L, Haanes KA, Warfvinge K, Krause DN (2018) CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat Rev Neurol 14(6):338–350PubMedCrossRef Edvinsson L, Haanes KA, Warfvinge K, Krause DN (2018) CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat Rev Neurol 14(6):338–350PubMedCrossRef
2.
go back to reference Edvinsson L (2017) The Trigeminovascular pathway: role of CGRP and CGRP receptors in migraine. Headache. 57(Suppl 2):47–55PubMedCrossRef Edvinsson L (2017) The Trigeminovascular pathway: role of CGRP and CGRP receptors in migraine. Headache. 57(Suppl 2):47–55PubMedCrossRef
3.
go back to reference Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350(11):1104–1110PubMedCrossRef Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350(11):1104–1110PubMedCrossRef
4.
go back to reference Lattanzi S, Brigo F, Trinka E, Vernieri F, Corradetti T, Dobran M et al (2019) Erenumab for preventive treatment of migraine: a systematic review and meta-analysis of efficacy and safety. Drugs. 79(4):417–431PubMedCrossRef Lattanzi S, Brigo F, Trinka E, Vernieri F, Corradetti T, Dobran M et al (2019) Erenumab for preventive treatment of migraine: a systematic review and meta-analysis of efficacy and safety. Drugs. 79(4):417–431PubMedCrossRef
5.
go back to reference Boado RJ, Zhou QH, Lu JZ, Hui EK, Pardridge WM (2010) Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm 7(1):237–244PubMedPubMedCentralCrossRef Boado RJ, Zhou QH, Lu JZ, Hui EK, Pardridge WM (2010) Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm 7(1):237–244PubMedPubMedCentralCrossRef
6.
go back to reference Edvinsson L, Tfelt-Hansen P (2008) The blood-brain barrier in migraine treatment. Cephalalgia. 28(12):1245–1258PubMedCrossRef Edvinsson L, Tfelt-Hansen P (2008) The blood-brain barrier in migraine treatment. Cephalalgia. 28(12):1245–1258PubMedCrossRef
7.
go back to reference Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP et al (2017) Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 140(6):1633–1642PubMedCrossRef Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP et al (2017) Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 140(6):1633–1642PubMedCrossRef
8.
go back to reference Amin FM, Hougaard A, Cramer SP, Christensen CE, Wolfram F, Larsson HBW et al (2017) Intact blood-brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur J Neurol 24(9):1116–1124PubMedCrossRef Amin FM, Hougaard A, Cramer SP, Christensen CE, Wolfram F, Larsson HBW et al (2017) Intact blood-brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur J Neurol 24(9):1116–1124PubMedCrossRef
9.
go back to reference Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L (2013) Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain 14(11):1289–1303PubMedCrossRef Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L (2013) Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain 14(11):1289–1303PubMedCrossRef
10.
go back to reference Schain AJ, Melo-Carrillo A, Stratton J, Strassman AM, Burstein R (2019) CSD-induced arterial dilatation and plasma protein extravasation are unaffected by Fremanezumab: implications for CGRP's role in migraine with Aura. J Neurosci 39(30):6001–6011PubMedCrossRefPubMedCentral Schain AJ, Melo-Carrillo A, Stratton J, Strassman AM, Burstein R (2019) CSD-induced arterial dilatation and plasma protein extravasation are unaffected by Fremanezumab: implications for CGRP's role in migraine with Aura. J Neurosci 39(30):6001–6011PubMedCrossRefPubMedCentral
11.
go back to reference Melo-Carrillo A, Strassman AM, Nir RR, Schain AJ, Noseda R, Stratton J et al (2017) Fremanezumab-a humanized monoclonal anti-CGRP antibody-inhibits thinly Myelinated (Adelta) but not unmyelinated (C) meningeal Nociceptors. J Neurosci 37(44):10587–10596PubMedPubMedCentralCrossRef Melo-Carrillo A, Strassman AM, Nir RR, Schain AJ, Noseda R, Stratton J et al (2017) Fremanezumab-a humanized monoclonal anti-CGRP antibody-inhibits thinly Myelinated (Adelta) but not unmyelinated (C) meningeal Nociceptors. J Neurosci 37(44):10587–10596PubMedPubMedCentralCrossRef
12.
go back to reference Haanes KA, Edvinsson L (2019) Pathophysiological mechanisms in migraine and the identification of new therapeutic targets. CNS Drugs 33(3):525–537PubMedCrossRef Haanes KA, Edvinsson L (2019) Pathophysiological mechanisms in migraine and the identification of new therapeutic targets. CNS Drugs 33(3):525–537PubMedCrossRef
13.
go back to reference Zhang L, Kunkler PE, Knopp KL, Oxford GS, Hurley JH (2019) Role of intraganglionic transmission in the trigeminovascular pathway. Mol Pain 15:1744806919836570PubMedPubMedCentral Zhang L, Kunkler PE, Knopp KL, Oxford GS, Hurley JH (2019) Role of intraganglionic transmission in the trigeminovascular pathway. Mol Pain 15:1744806919836570PubMedPubMedCentral
14.
go back to reference Walker CS, Raddant AC, Woolley MJ, Russo AF, Hay DL (2018) CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured. Cephalalgia. 38(3):437–451PubMedCrossRef Walker CS, Raddant AC, Woolley MJ, Russo AF, Hay DL (2018) CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured. Cephalalgia. 38(3):437–451PubMedCrossRef
15.
go back to reference Salzer JL (1997) Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind. Neuron. 18(6):843–846PubMedCrossRef Salzer JL (1997) Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind. Neuron. 18(6):843–846PubMedCrossRef
17.
go back to reference Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113(1):1–18PubMedCrossRef Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113(1):1–18PubMedCrossRef
18.
go back to reference Rios JC, Melendez-Vasquez CV, Einheber S, Lustig M, Grumet M, Hemperly J et al (2000) Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20(22):8354–8364PubMedPubMedCentralCrossRef Rios JC, Melendez-Vasquez CV, Einheber S, Lustig M, Grumet M, Hemperly J et al (2000) Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20(22):8354–8364PubMedPubMedCentralCrossRef
19.
go back to reference Einheber S, Zanazzi G, Ching W, Scherer S, Milner TA, Peles E et al (1997) The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 139(6):1495–1506PubMedPubMedCentralCrossRef Einheber S, Zanazzi G, Ching W, Scherer S, Milner TA, Peles E et al (1997) The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 139(6):1495–1506PubMedPubMedCentralCrossRef
20.
go back to reference Dreisig K, Blixt FW, Warfvinge K (2018) Retinal Cryo-sections, whole-mounts, and hypotonic isolated vasculature preparations for Immunohistochemical visualization of microvascular Pericytes. JoVE (140):e57733 Dreisig K, Blixt FW, Warfvinge K (2018) Retinal Cryo-sections, whole-mounts, and hypotonic isolated vasculature preparations for Immunohistochemical visualization of microvascular Pericytes. JoVE (140):e57733
21.
go back to reference Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J (2013) NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia. 33(2):87–100PubMedCrossRef Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J (2013) NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia. 33(2):87–100PubMedCrossRef
22.
go back to reference Haanes KA, Labastida-Ramírez A, Blixt FW, Rubio-Beltrán E, Dirven CM, Danser AHJ, Edvinsson L, MaassenVanDenBrink A (2019) Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 39(11):1421–1434PubMedCrossRef Haanes KA, Labastida-Ramírez A, Blixt FW, Rubio-Beltrán E, Dirven CM, Danser AHJ, Edvinsson L, MaassenVanDenBrink A (2019) Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 39(11):1421–1434PubMedCrossRef
23.
go back to reference Eftekhari S, Edvinsson L (2011) Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 12:112PubMedPubMedCentralCrossRef Eftekhari S, Edvinsson L (2011) Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 12:112PubMedPubMedCentralCrossRef
24.
go back to reference Miller S, Liu H, Warfvinge K, Shi L, Dovlatyan M, Xu C et al (2016) Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies. Neuroscience. 328:165–183PubMedCrossRef Miller S, Liu H, Warfvinge K, Shi L, Dovlatyan M, Xu C et al (2016) Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies. Neuroscience. 328:165–183PubMedCrossRef
25.
go back to reference Cottrell GS (2018) CGRP receptor Signalling pathways. Handb Exp Pharmacol Cottrell GS (2018) CGRP receptor Signalling pathways. Handb Exp Pharmacol
26.
go back to reference Jarnaess E, Tasken K (2007) Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochem Soc Trans 35(Pt 5):931–937PubMedCrossRef Jarnaess E, Tasken K (2007) Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochem Soc Trans 35(Pt 5):931–937PubMedCrossRef
27.
go back to reference Ghosh A, Sherman DL, Brophy PJ (2018) The axonal cytoskeleton and the assembly of nodes of Ranvier. Neuroscientist. 24(2):104–110PubMedCrossRef Ghosh A, Sherman DL, Brophy PJ (2018) The axonal cytoskeleton and the assembly of nodes of Ranvier. Neuroscientist. 24(2):104–110PubMedCrossRef
28.
go back to reference Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience. 89(3):901–907PubMedCrossRef Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience. 89(3):901–907PubMedCrossRef
29.
30.
go back to reference Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I (2012) mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain. 153(4):830–838PubMedCrossRef Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I (2012) mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain. 153(4):830–838PubMedCrossRef
31.
go back to reference Smolen AJ (1988) Morphology of synapses in the autonomic nervous system. J Electron Microsc Tech 10(2):187–204PubMedCrossRef Smolen AJ (1988) Morphology of synapses in the autonomic nervous system. J Electron Microsc Tech 10(2):187–204PubMedCrossRef
32.
go back to reference Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology. 153(4):1850–1860PubMedPubMedCentralCrossRef Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology. 153(4):1850–1860PubMedPubMedCentralCrossRef
33.
go back to reference Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94(4):1099–1142PubMedPubMedCentralCrossRef Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94(4):1099–1142PubMedPubMedCentralCrossRef
35.
go back to reference Scheuer T (2011) Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 22(2):160–165PubMedCrossRef Scheuer T (2011) Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 22(2):160–165PubMedCrossRef
36.
go back to reference Liu S, Zheng P (2013) Altered PKA modulation in the Nav1.1 epilepsy variant I1656M. J Neurophysiol 110(9):2090–2098PubMedCrossRef Liu S, Zheng P (2013) Altered PKA modulation in the Nav1.1 epilepsy variant I1656M. J Neurophysiol 110(9):2090–2098PubMedCrossRef
37.
go back to reference Arancibia-Carcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D (2017) Node of Ranvier length as a potential regulator of myelinated axon conduction speed. Elife. 6 Arancibia-Carcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D (2017) Node of Ranvier length as a potential regulator of myelinated axon conduction speed. Elife. 6
38.
go back to reference Shrager P (1989) Sodium channels in single demyelinated mammalian axons. Brain Res 483(1):149–154PubMedCrossRef Shrager P (1989) Sodium channels in single demyelinated mammalian axons. Brain Res 483(1):149–154PubMedCrossRef
39.
go back to reference Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1993) Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 365(6441):75–79PubMedCrossRef Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1993) Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 365(6441):75–79PubMedCrossRef
40.
go back to reference Mi H, Deerinck TJ, Ellisman MH, Schwarz TL (1995) Differential distribution of closely related potassium channels in rat Schwann cells. J Neurosci 15(5):3761–3774PubMedPubMedCentralCrossRef Mi H, Deerinck TJ, Ellisman MH, Schwarz TL (1995) Differential distribution of closely related potassium channels in rat Schwann cells. J Neurosci 15(5):3761–3774PubMedPubMedCentralCrossRef
41.
go back to reference Lee JH, Park CK, Chen G, Han Q, Xie RG, Liu T et al (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. 157(6):1393–1404PubMedPubMedCentralCrossRef Lee JH, Park CK, Chen G, Han Q, Xie RG, Liu T et al (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. 157(6):1393–1404PubMedPubMedCentralCrossRef
42.
go back to reference Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA et al (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110(43):17534–17539PubMedPubMedCentralCrossRef Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA et al (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110(43):17534–17539PubMedPubMedCentralCrossRef
43.
go back to reference Black JA, Frézel N, Dib-Hajj SD, Waxman SG (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82PubMedPubMedCentralCrossRef Black JA, Frézel N, Dib-Hajj SD, Waxman SG (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82PubMedPubMedCentralCrossRef
44.
go back to reference Chatelier A, Dahllund L, Eriksson A, Krupp J, Chahine M (2008) Biophysical properties of human Na v1.7 splice variants and their regulation by protein kinase a. J Neurophysiol 99(5):2241–2250PubMedCrossRef Chatelier A, Dahllund L, Eriksson A, Krupp J, Chahine M (2008) Biophysical properties of human Na v1.7 splice variants and their regulation by protein kinase a. J Neurophysiol 99(5):2241–2250PubMedCrossRef
45.
go back to reference Humphrey PP (2007) The discovery of a new drug class for the acute treatment of migraine. Headache. 47(Suppl 1):S10–S19PubMedCrossRef Humphrey PP (2007) The discovery of a new drug class for the acute treatment of migraine. Headache. 47(Suppl 1):S10–S19PubMedCrossRef
46.
go back to reference Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, Bogaerdt A, Bogers AJJC, Zanelli E, Meeus L, Danser AHJ, Gralinski MR, Senese PB, Johnson KW, Kovalchin J, Villalón CM, MaassenVanDenBrink A (2019) Characterization of binding, functional activity and contractile responses of the selective 5-HT receptor agonist lasmiditan. British Journal of Pharmacology Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, Bogaerdt A, Bogers AJJC, Zanelli E, Meeus L, Danser AHJ, Gralinski MR, Senese PB, Johnson KW, Kovalchin J, Villalón CM, MaassenVanDenBrink A (2019) Characterization of binding, functional activity and contractile responses of the selective 5-HT receptor agonist lasmiditan. British Journal of Pharmacology
47.
go back to reference Pascual J, Munoz P (2005) Correlation between lipophilicity and triptan outcomes. Headache. 45(1):3–6PubMedCrossRef Pascual J, Munoz P (2005) Correlation between lipophilicity and triptan outcomes. Headache. 45(1):3–6PubMedCrossRef
48.
go back to reference Lundblad C, Haanes KA, Grande G, Edvinsson L. (2015) Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage. The journal of headache and pain. 16:91 Lundblad C, Haanes KA, Grande G, Edvinsson L. (2015) Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage. The journal of headache and pain. 16:91
49.
go back to reference Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S et al (2016) Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: a detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 524(1):90–118PubMedCrossRef Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S et al (2016) Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: a detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 524(1):90–118PubMedCrossRef
50.
Metadata
Title
C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system
Authors
Jacob C. A. Edvinsson
Karin Warfvinge
Diana N. Krause
Frank W. Blixt
Majid Sheykhzade
Lars Edvinsson
Kristian A. Haanes
Publication date
01-12-2019
Publisher
Springer Milan
Keyword
Migraine
Published in
The Journal of Headache and Pain / Issue 1/2019
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-019-1055-3

Other articles of this Issue 1/2019

The Journal of Headache and Pain 1/2019 Go to the issue