Skip to main content
Top
Published in: Critical Care 3/2014

Open Access 01-06-2014 | Research

Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress

Authors: Leigh A Callahan, Gerald S Supinski

Published in: Critical Care | Issue 3/2014

Login to get access

Abstract

Introduction

A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects.

Methods

HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress.

Results

HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). PEG-SOD also restored HG-induced reductions in diaphragm single fiber force generation (for example, Fmax was 182.9 ± 1.8, 85.7 ± 2.0, 148.6 ± 2.4 and 90.9 ± 1.5 kPa in control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). HG-induced troponin T depletion, protein nitrotyrosine formation, and carbonyl modifications were largely prevented by PEG-SOD.

Conclusions

HG-induced reductions in diaphragm force generation occur largely at the level of the contractile proteins, are associated with depletion of troponin T and increased indices of oxidative stress, findings not previously reported. Importantly, administration of PEG-SOD largely ablated these derangements, indicating that superoxide generation plays a major role in hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness.
Appendix
Available only for authorised users
Literature
1.
go back to reference Latronico N, Bolton CF: Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011, 10: 931-941. 10.1016/S1474-4422(11)70178-8.PubMedCrossRef Latronico N, Bolton CF: Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011, 10: 931-941. 10.1016/S1474-4422(11)70178-8.PubMedCrossRef
3.
go back to reference Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, Matecki S, Duguet A, Similowski T, Jaber S: Diaphragm dysfunction on admission to ICU: prevalence, risk factors and prognostic impact - a prospective study. Am J Respir Crit Care Med. 2013, 188: 213-219. 10.1164/rccm.201209-1668OC.PubMedCrossRef Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, Matecki S, Duguet A, Similowski T, Jaber S: Diaphragm dysfunction on admission to ICU: prevalence, risk factors and prognostic impact - a prospective study. Am J Respir Crit Care Med. 2013, 188: 213-219. 10.1164/rccm.201209-1668OC.PubMedCrossRef
4.
go back to reference Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G: Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010, 14: R127-10.1186/cc9094.PubMedPubMedCentralCrossRef Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G: Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010, 14: R127-10.1186/cc9094.PubMedPubMedCentralCrossRef
5.
go back to reference Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, Green M, Moxham J: Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001, 29: 1325-1331. 10.1097/00003246-200107000-00005.PubMedCrossRef Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, Green M, Moxham J: Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001, 29: 1325-1331. 10.1097/00003246-200107000-00005.PubMedCrossRef
6.
go back to reference De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L: Does ICU-acquired paresis lengthen weaning from mechanical ventilation?. Intensive Care Med. 2004, 30: 1117-1121. 10.1007/s00134-004-2174-z.PubMedCrossRef De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L: Does ICU-acquired paresis lengthen weaning from mechanical ventilation?. Intensive Care Med. 2004, 30: 1117-1121. 10.1007/s00134-004-2174-z.PubMedCrossRef
7.
go back to reference Hermans G, De Jonghe B, Bruyninckx F, Berghe GV: Clinical review: critical illness polyneuropathy and myopathy. Crit Care. 2008, 12: 238-10.1186/cc7100.PubMedPubMedCentralCrossRef Hermans G, De Jonghe B, Bruyninckx F, Berghe GV: Clinical review: critical illness polyneuropathy and myopathy. Crit Care. 2008, 12: 238-10.1186/cc7100.PubMedPubMedCentralCrossRef
8.
go back to reference De Jonghe B, Lacherade JC, Durand MC, Sharshar T: Critical illness neuromuscular syndromes. Neurol Clin. 2008, 26: 507-520. 10.1016/j.ncl.2008.03.001. ixPubMedCrossRef De Jonghe B, Lacherade JC, Durand MC, Sharshar T: Critical illness neuromuscular syndromes. Neurol Clin. 2008, 26: 507-520. 10.1016/j.ncl.2008.03.001. ixPubMedCrossRef
9.
go back to reference van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R: Intensive insulin therapy in critically ill patients. N Engl J Med. 2001, 345: 1359-1367. 10.1056/NEJMoa011300.PubMedCrossRef van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R: Intensive insulin therapy in critically ill patients. N Engl J Med. 2001, 345: 1359-1367. 10.1056/NEJMoa011300.PubMedCrossRef
10.
go back to reference Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, Bruyninckx F, Van den Berghe G: Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007, 175: 480-489. 10.1164/rccm.200605-665OC.PubMedCrossRef Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, Bruyninckx F, Van den Berghe G: Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007, 175: 480-489. 10.1164/rccm.200605-665OC.PubMedCrossRef
11.
go back to reference Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G: Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev. 2009, 1: CD006832-PubMed Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G: Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev. 2009, 1: CD006832-PubMed
12.
go back to reference Hermans G, Schrooten M, Van Damme P, Berends N, Bouckaert B, De Vooght W, Robberecht W, Van den Berghe G: Benefits of intensive insulin therapy on neuromuscular complications in routine daily critical care practice: a retrospective study. Crit Care. 2009, 13: R5-10.1186/cc7694.PubMedPubMedCentralCrossRef Hermans G, Schrooten M, Van Damme P, Berends N, Bouckaert B, De Vooght W, Robberecht W, Van den Berghe G: Benefits of intensive insulin therapy on neuromuscular complications in routine daily critical care practice: a retrospective study. Crit Care. 2009, 13: R5-10.1186/cc7694.PubMedPubMedCentralCrossRef
13.
go back to reference Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R: Intensive insulin therapy in the medical ICU. N Engl J Med. 2006, 354: 449-461. 10.1056/NEJMoa052521.PubMedCrossRef Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R: Intensive insulin therapy in the medical ICU. N Engl J Med. 2006, 354: 449-461. 10.1056/NEJMoa052521.PubMedCrossRef
14.
go back to reference Lipton JA, Barendse RJ, Van Domburg RT, Schinkel AF, Boersma H, Simoons MI, Akkerhuis KM: Hyperglycemia at admission and during hospital stay are independent risk factors for mortality in high risk cardiac patients admitted to an intensive cardiac care unit. Eur Heart J Acute Cardiovasc Care. 2013, 2: 306-313. 10.1177/2048872613489304.PubMedPubMedCentralCrossRef Lipton JA, Barendse RJ, Van Domburg RT, Schinkel AF, Boersma H, Simoons MI, Akkerhuis KM: Hyperglycemia at admission and during hospital stay are independent risk factors for mortality in high risk cardiac patients admitted to an intensive cardiac care unit. Eur Heart J Acute Cardiovasc Care. 2013, 2: 306-313. 10.1177/2048872613489304.PubMedPubMedCentralCrossRef
15.
go back to reference Shimoyama T, Kimura K, Uemura J, Saji N, Shibazaki K: Elevated glucose level adversely affects infarct volume growth and neurological deterioration in non-diabetic stroke patients, but not diabetic stroke patients. Eur J Neurol. 2014, 21: 402-410. 10.1111/ene.12280.PubMedCrossRef Shimoyama T, Kimura K, Uemura J, Saji N, Shibazaki K: Elevated glucose level adversely affects infarct volume growth and neurological deterioration in non-diabetic stroke patients, but not diabetic stroke patients. Eur J Neurol. 2014, 21: 402-410. 10.1111/ene.12280.PubMedCrossRef
16.
go back to reference Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G: Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev. 2014, 1: CD006832-PubMed Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G: Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev. 2014, 1: CD006832-PubMed
17.
go back to reference Sedeek M, Montezano AC, Hebert RL, Gray SP, Di Marco E, Jha JC, Cooper ME, Jandeleit-Dahm K, Schiffrin EL, Wilkinson-Berka JL, Touyz RM: Oxidative stress, Nox isoforms and complications of diabetes–potential targets for novel therapies. J Cardiovasc Transl Res. 2012, 5: 509-518. 10.1007/s12265-012-9387-2.PubMedCrossRef Sedeek M, Montezano AC, Hebert RL, Gray SP, Di Marco E, Jha JC, Cooper ME, Jandeleit-Dahm K, Schiffrin EL, Wilkinson-Berka JL, Touyz RM: Oxidative stress, Nox isoforms and complications of diabetes–potential targets for novel therapies. J Cardiovasc Transl Res. 2012, 5: 509-518. 10.1007/s12265-012-9387-2.PubMedCrossRef
19.
go back to reference Munusamy S, MacMillan-Crow LA: Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Free Radic Biol Med. 2009, 46: 1149-1157. 10.1016/j.freeradbiomed.2009.01.022.PubMedCrossRef Munusamy S, MacMillan-Crow LA: Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Free Radic Biol Med. 2009, 46: 1149-1157. 10.1016/j.freeradbiomed.2009.01.022.PubMedCrossRef
21.
go back to reference Callahan LA, Stofan DA, Szweda LI, Nethery DE, Supinski GS: Free radicals alter maximal diaphragmatic mitochondrial oxygen consumption in endotoxin-induced sepsis. Free Radic Biol Med. 2001, 30: 129-138. 10.1016/S0891-5849(00)00454-8.PubMedCrossRef Callahan LA, Stofan DA, Szweda LI, Nethery DE, Supinski GS: Free radicals alter maximal diaphragmatic mitochondrial oxygen consumption in endotoxin-induced sepsis. Free Radic Biol Med. 2001, 30: 129-138. 10.1016/S0891-5849(00)00454-8.PubMedCrossRef
22.
go back to reference Nethery D, DiMarco A, Stofan D, Supinski G: Sepsis increases contraction-related generation of reactive oxygen species in the diaphragm. J Appl Physiol. 1999, 87: 1279-1286.PubMed Nethery D, DiMarco A, Stofan D, Supinski G: Sepsis increases contraction-related generation of reactive oxygen species in the diaphragm. J Appl Physiol. 1999, 87: 1279-1286.PubMed
23.
go back to reference Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN, Smuder AJ: Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011, 39: 1749-1759. 10.1097/CCM.0b013e3182190b62.PubMedCrossRef Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN, Smuder AJ: Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011, 39: 1749-1759. 10.1097/CCM.0b013e3182190b62.PubMedCrossRef
24.
go back to reference Callahan LA, Nethery D, Stofan D, DiMarco A, Supinski G: Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol. 2001, 24: 210-217. 10.1165/ajrcmb.24.2.4075.PubMedCrossRef Callahan LA, Nethery D, Stofan D, DiMarco A, Supinski G: Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol. 2001, 24: 210-217. 10.1165/ajrcmb.24.2.4075.PubMedCrossRef
25.
go back to reference Supinski GS, Callahan LA: Diaphragmatic free radical generation increases in an animal model of heart failure. J Appl Physiol. 2005, 99: 1078-1084. 10.1152/japplphysiol.01145.2004.PubMedCrossRef Supinski GS, Callahan LA: Diaphragmatic free radical generation increases in an animal model of heart failure. J Appl Physiol. 2005, 99: 1078-1084. 10.1152/japplphysiol.01145.2004.PubMedCrossRef
26.
go back to reference Li X, Moody MR, Engel D, Walker S, Clubb FJ, Sivasubramanian N, Mann DL, Reid MB: Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation. 2000, 102: 1690-1696. 10.1161/01.CIR.102.14.1690.PubMedCrossRef Li X, Moody MR, Engel D, Walker S, Clubb FJ, Sivasubramanian N, Mann DL, Reid MB: Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation. 2000, 102: 1690-1696. 10.1161/01.CIR.102.14.1690.PubMedCrossRef
27.
go back to reference Hida W, Shindoh C, Satoh J, Sagara M, Kikuchi Y, Toyota T, Shirato K: N-acetylcysteine inhibits loss of diaphragm function in streptozotocin-treated rats. Am J Respir Crit Care Med. 1996, 153: 1875-1879. 10.1164/ajrccm.153.6.8665049.PubMedCrossRef Hida W, Shindoh C, Satoh J, Sagara M, Kikuchi Y, Toyota T, Shirato K: N-acetylcysteine inhibits loss of diaphragm function in streptozotocin-treated rats. Am J Respir Crit Care Med. 1996, 153: 1875-1879. 10.1164/ajrccm.153.6.8665049.PubMedCrossRef
28.
go back to reference Supinski GS, Vanags J, Callahan LA: Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care. 2010, 14: R35-10.1186/cc8913.PubMedPubMedCentralCrossRef Supinski GS, Vanags J, Callahan LA: Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care. 2010, 14: R35-10.1186/cc8913.PubMedPubMedCentralCrossRef
29.
go back to reference Supinski GS, Vanags J, Callahan LA: Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol. 2009, 296: L994-L1001. 10.1152/ajplung.90404.2008.PubMedPubMedCentralCrossRef Supinski GS, Vanags J, Callahan LA: Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol. 2009, 296: L994-L1001. 10.1152/ajplung.90404.2008.PubMedPubMedCentralCrossRef
30.
go back to reference Supinski GS, Wang W, Callahan LA: Caspase and calpain activation both contribute to sepsis-induced diaphragmatic weakness. J Appl Physiol. 2009, 107: 1389-1396. 10.1152/japplphysiol.00341.2009.PubMedPubMedCentralCrossRef Supinski GS, Wang W, Callahan LA: Caspase and calpain activation both contribute to sepsis-induced diaphragmatic weakness. J Appl Physiol. 2009, 107: 1389-1396. 10.1152/japplphysiol.00341.2009.PubMedPubMedCentralCrossRef
31.
go back to reference Close RI: Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972, 52: 129-197.PubMed Close RI: Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972, 52: 129-197.PubMed
32.
go back to reference Callahan LA, She ZW, Nosek TM: Superoxide, hydroxyl radical, and hydrogen peroxide effects on single-diaphragm fiber contractile apparatus. J Appl Physiol. 2001, 90: 45-54.PubMed Callahan LA, She ZW, Nosek TM: Superoxide, hydroxyl radical, and hydrogen peroxide effects on single-diaphragm fiber contractile apparatus. J Appl Physiol. 2001, 90: 45-54.PubMed
33.
go back to reference Supinski G, Nethery D, Nosek TM, Callahan LA, Stofan D, DiMarco A: Endotoxin administration alters the force vs. pCa relationship of skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol. 2000, 278: R891-R896.PubMed Supinski G, Nethery D, Nosek TM, Callahan LA, Stofan D, DiMarco A: Endotoxin administration alters the force vs. pCa relationship of skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol. 2000, 278: R891-R896.PubMed
34.
go back to reference Supinski G, Stofan D, Callahan LA, Nethery D, Nosek TM, DiMarco A: Peroxynitrite induces contractile dysfunction and lipid peroxidation in the diaphragm. J Appl Physiol. 1999, 87: 783-791.PubMed Supinski G, Stofan D, Callahan LA, Nethery D, Nosek TM, DiMarco A: Peroxynitrite induces contractile dysfunction and lipid peroxidation in the diaphragm. J Appl Physiol. 1999, 87: 783-791.PubMed
35.
go back to reference Geiger PC, Cody MJ, Macken RL, Sieck GC: Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol (1985). 2000, 89: 695-703. Geiger PC, Cody MJ, Macken RL, Sieck GC: Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol (1985). 2000, 89: 695-703.
36.
go back to reference Eddinger TJ, Moss RL: Mechanical properties of skinned single fibers of identified types from rat diaphragm. Am J Physiol. 1987, 253: C210-C218.PubMed Eddinger TJ, Moss RL: Mechanical properties of skinned single fibers of identified types from rat diaphragm. Am J Physiol. 1987, 253: C210-C218.PubMed
37.
go back to reference Mantilla CB, Sieck GC: Impact of diaphragm muscle fiber atrophy on neuromotor control. Respir Physiol Neurobiol. 2013, 189: 411-418. 10.1016/j.resp.2013.06.025.PubMedCrossRef Mantilla CB, Sieck GC: Impact of diaphragm muscle fiber atrophy on neuromotor control. Respir Physiol Neurobiol. 2013, 189: 411-418. 10.1016/j.resp.2013.06.025.PubMedCrossRef
38.
go back to reference Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK: Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol. 2003, 95: 1116-1124.PubMedCrossRef Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK: Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol. 2003, 95: 1116-1124.PubMedCrossRef
39.
go back to reference Barreiro E, Gea J, Di Falco M, Kriazhev L, James S, Hussain SN: Protein carbonyl formation in the diaphragm. Am J Respir Cell Mol Biol. 2005, 32: 9-17. 10.1165/rcmb.2004-0021OC.PubMedCrossRef Barreiro E, Gea J, Di Falco M, Kriazhev L, James S, Hussain SN: Protein carbonyl formation in the diaphragm. Am J Respir Cell Mol Biol. 2005, 32: 9-17. 10.1165/rcmb.2004-0021OC.PubMedCrossRef
40.
go back to reference Salvi N, Guellich A, Michelet P, Demoule A, Le Guen M, Renou L, Bonne G, Riou B, Langeron O, Coirault C: Upregulation of PPARbeta/delta is associated with structural and functional changes in the type I diabetes rat diaphragm. PLoS One. 2010, 5: e11494-10.1371/journal.pone.0011494.PubMedPubMedCentralCrossRef Salvi N, Guellich A, Michelet P, Demoule A, Le Guen M, Renou L, Bonne G, Riou B, Langeron O, Coirault C: Upregulation of PPARbeta/delta is associated with structural and functional changes in the type I diabetes rat diaphragm. PLoS One. 2010, 5: e11494-10.1371/journal.pone.0011494.PubMedPubMedCentralCrossRef
41.
go back to reference Brotto M, Brotto L, Jin JP, Nosek TM, Romani A: Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats. J Biomed Biotechnol. 2010, 2010: 931903-PubMedPubMedCentralCrossRef Brotto M, Brotto L, Jin JP, Nosek TM, Romani A: Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats. J Biomed Biotechnol. 2010, 2010: 931903-PubMedPubMedCentralCrossRef
42.
go back to reference Sheikh-Ali M, Sultan S, Alamir AR, Haas MJ, Mooradian AD: Effects of antioxidants on glucose-induced oxidative stress and endoplasmic reticulum stress in endothelial cells. Diabetes Res Clin Pract. 2010, 87: 161-166. 10.1016/j.diabres.2009.10.023.PubMedCrossRef Sheikh-Ali M, Sultan S, Alamir AR, Haas MJ, Mooradian AD: Effects of antioxidants on glucose-induced oxidative stress and endoplasmic reticulum stress in endothelial cells. Diabetes Res Clin Pract. 2010, 87: 161-166. 10.1016/j.diabres.2009.10.023.PubMedCrossRef
43.
go back to reference Fatehi-Hassanabad Z, Chan CB, Furman BL: Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol. 2010, 636: 8-17. 10.1016/j.ejphar.2010.03.048.PubMedCrossRef Fatehi-Hassanabad Z, Chan CB, Furman BL: Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol. 2010, 636: 8-17. 10.1016/j.ejphar.2010.03.048.PubMedCrossRef
44.
go back to reference San Martin A, Foncea R, Laurindo FR, Ebensperger R, Griendling KK, Leighton F: Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radic Biol Med. 2007, 42: 1671-1679. 10.1016/j.freeradbiomed.2007.02.002.PubMedCrossRef San Martin A, Foncea R, Laurindo FR, Ebensperger R, Griendling KK, Leighton F: Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radic Biol Med. 2007, 42: 1671-1679. 10.1016/j.freeradbiomed.2007.02.002.PubMedCrossRef
45.
go back to reference Nishikawa T, Edelstein D, Brownlee M: The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl. 2000, 77: S26-S30.PubMedCrossRef Nishikawa T, Edelstein D, Brownlee M: The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl. 2000, 77: S26-S30.PubMedCrossRef
46.
go back to reference Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404: 787-790. 10.1038/35008121.PubMedCrossRef Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404: 787-790. 10.1038/35008121.PubMedCrossRef
47.
go back to reference Powers SK, Ji LL, Kavazis AN, Jackson MJ: Reactive oxygen species: impact on skeletal muscle. Compr Physiol. 2011, 1: 941-969.PubMedPubMedCentral Powers SK, Ji LL, Kavazis AN, Jackson MJ: Reactive oxygen species: impact on skeletal muscle. Compr Physiol. 2011, 1: 941-969.PubMedPubMedCentral
48.
go back to reference Jackson MJ: Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal. 2011, 15: 2477-2486. 10.1089/ars.2011.3976.PubMedPubMedCentralCrossRef Jackson MJ: Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal. 2011, 15: 2477-2486. 10.1089/ars.2011.3976.PubMedPubMedCentralCrossRef
49.
go back to reference Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ: Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal. 2013, 18: 603-621. 10.1089/ars.2012.4623.PubMedPubMedCentralCrossRef Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ: Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal. 2013, 18: 603-621. 10.1089/ars.2012.4623.PubMedPubMedCentralCrossRef
50.
go back to reference Supinski GS, Callahan LA: Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol. 2007, 102: 2056-2063. 10.1152/japplphysiol.01138.2006.PubMedCrossRef Supinski GS, Callahan LA: Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol. 2007, 102: 2056-2063. 10.1152/japplphysiol.01138.2006.PubMedCrossRef
51.
go back to reference Supinski G: Free radical induced respiratory muscle dysfunction. Mol Cell Biochem. 1998, 179: 99-110. 10.1023/A:1006859920875.PubMedCrossRef Supinski G: Free radical induced respiratory muscle dysfunction. Mol Cell Biochem. 1998, 179: 99-110. 10.1023/A:1006859920875.PubMedCrossRef
52.
go back to reference Supinski GS, Callahan LA: Double-stranded RNA-dependent protein kinase activation modulates endotoxin-induced diaphragm weakness. J Appl Physiol. 2011, 110: 199-205. 10.1152/japplphysiol.01203.2009.PubMedPubMedCentralCrossRef Supinski GS, Callahan LA: Double-stranded RNA-dependent protein kinase activation modulates endotoxin-induced diaphragm weakness. J Appl Physiol. 2011, 110: 199-205. 10.1152/japplphysiol.01203.2009.PubMedPubMedCentralCrossRef
53.
go back to reference Supinski GS, Ji XY, Callahan LA: p38 Mitogen-activated protein kinase modulates endotoxin-induced diaphragm caspase activation. Am J Respir Cell Mol Biol. 2010, 43: 121-127. 10.1165/rcmb.2008-0395OC.PubMedPubMedCentralCrossRef Supinski GS, Ji XY, Callahan LA: p38 Mitogen-activated protein kinase modulates endotoxin-induced diaphragm caspase activation. Am J Respir Cell Mol Biol. 2010, 43: 121-127. 10.1165/rcmb.2008-0395OC.PubMedPubMedCentralCrossRef
54.
go back to reference Supinski GS, Ji X, Callahan LA: The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation. Am J Physiol Regul Integr Comp Physiol. 2009, 297: R825-R834. 10.1152/ajpregu.90849.2008.PubMedPubMedCentralCrossRef Supinski GS, Ji X, Callahan LA: The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation. Am J Physiol Regul Integr Comp Physiol. 2009, 297: R825-R834. 10.1152/ajpregu.90849.2008.PubMedPubMedCentralCrossRef
55.
go back to reference Supinski GS, Ji X, Wang W, Callahan LA: The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction. J Appl Physiol. 2007, 102: 1649-1657.PubMedCrossRef Supinski GS, Ji X, Wang W, Callahan LA: The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction. J Appl Physiol. 2007, 102: 1649-1657.PubMedCrossRef
56.
go back to reference Supinski GS, Callahan LA: Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol. 2006, 100: 1770-1777. 10.1152/japplphysiol.01288.2005.PubMedCrossRef Supinski GS, Callahan LA: Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol. 2006, 100: 1770-1777. 10.1152/japplphysiol.01288.2005.PubMedCrossRef
57.
go back to reference Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK: Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med. 2010, 49: 1152-1160. 10.1016/j.freeradbiomed.2010.06.025.PubMedPubMedCentralCrossRef Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK: Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med. 2010, 49: 1152-1160. 10.1016/j.freeradbiomed.2010.06.025.PubMedPubMedCentralCrossRef
58.
go back to reference Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK: Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol. 2010, 108: 1376-1382. 10.1152/japplphysiol.00098.2010.PubMedPubMedCentralCrossRef Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK: Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol. 2010, 108: 1376-1382. 10.1152/japplphysiol.00098.2010.PubMedPubMedCentralCrossRef
59.
go back to reference Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB: Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008, 358: 1327-1335. 10.1056/NEJMoa070447.PubMedCrossRef Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB: Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008, 358: 1327-1335. 10.1056/NEJMoa070447.PubMedCrossRef
60.
go back to reference McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK: Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med. 2007, 175: 150-159. 10.1164/rccm.200601-142OC.PubMedPubMedCentralCrossRef McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK: Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med. 2007, 175: 150-159. 10.1164/rccm.200601-142OC.PubMedPubMedCentralCrossRef
61.
go back to reference Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK: Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med. 2012, 40: 1857-1863. 10.1097/CCM.0b013e318246bb5d.PubMedPubMedCentralCrossRef Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK: Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med. 2012, 40: 1857-1863. 10.1097/CCM.0b013e318246bb5d.PubMedPubMedCentralCrossRef
62.
go back to reference Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK: Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med. 2002, 166: 1369-1374. 10.1164/rccm.200202-088OC.PubMedCrossRef Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK: Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med. 2002, 166: 1369-1374. 10.1164/rccm.200202-088OC.PubMedCrossRef
63.
go back to reference Supinski GS, Wang L, Callahan LA: Effects of active caspase on contractile protein function and structure. Am J Respir Crit Care Med. 2009, 179: A4188- Supinski GS, Wang L, Callahan LA: Effects of active caspase on contractile protein function and structure. Am J Respir Crit Care Med. 2009, 179: A4188-
64.
go back to reference Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ: Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A. 2002, 99: 6252-6256. 10.1073/pnas.092022999.PubMedPubMedCentralCrossRef Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ: Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A. 2002, 99: 6252-6256. 10.1073/pnas.092022999.PubMedPubMedCentralCrossRef
65.
go back to reference Lametsch R, Roepstorff P, Moller HS, Bendixen E: Identification of myofibrillar substrates for mu-calpain. Meat Sci. 2004, 68: 515-521. 10.1016/j.meatsci.2004.03.018.PubMedCrossRef Lametsch R, Roepstorff P, Moller HS, Bendixen E: Identification of myofibrillar substrates for mu-calpain. Meat Sci. 2004, 68: 515-521. 10.1016/j.meatsci.2004.03.018.PubMedCrossRef
66.
go back to reference Langouche L, Vander Perre S, Wouters PJ, D’Hoore A, Hansen TK, Van den Berghe G: Effect of intensive insulin therapy on insulin sensitivity in the critically ill. J Clin Endocrinol Metab. 2007, 92: 3890-3897. 10.1210/jc.2007-0813.PubMedCrossRef Langouche L, Vander Perre S, Wouters PJ, D’Hoore A, Hansen TK, Van den Berghe G: Effect of intensive insulin therapy on insulin sensitivity in the critically ill. J Clin Endocrinol Metab. 2007, 92: 3890-3897. 10.1210/jc.2007-0813.PubMedCrossRef
67.
go back to reference Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi S, Farhangi A, Verdi AA, Mofidian SM, Rad BL: Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007, 22: 60-64. 10.1007/BF02913315.PubMedPubMedCentralCrossRef Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi S, Farhangi A, Verdi AA, Mofidian SM, Rad BL: Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007, 22: 60-64. 10.1007/BF02913315.PubMedPubMedCentralCrossRef
68.
go back to reference Lenzen S: The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008, 51: 216-226. 10.1007/s00125-007-0886-7.PubMedCrossRef Lenzen S: The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008, 51: 216-226. 10.1007/s00125-007-0886-7.PubMedCrossRef
69.
go back to reference Lin CY, Higginbotham DA, Judd RL, White BD: Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2002, 282: E1084-E1091.PubMedCrossRef Lin CY, Higginbotham DA, Judd RL, White BD: Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2002, 282: E1084-E1091.PubMedCrossRef
70.
go back to reference Watanabe Y, Singamsetty S, Zou B, Guo L, Stefanovski D, Alonso LC, Garcia-Ocana A, O'Donnell CP, McVerry BJ: Exogenous glucose administration impairs glucose tolerance and pancreatic insulin secretion during acute sepsis in non-diabetic mice. PLoS One. 2013, 8: e67716-10.1371/journal.pone.0067716.PubMedPubMedCentralCrossRef Watanabe Y, Singamsetty S, Zou B, Guo L, Stefanovski D, Alonso LC, Garcia-Ocana A, O'Donnell CP, McVerry BJ: Exogenous glucose administration impairs glucose tolerance and pancreatic insulin secretion during acute sepsis in non-diabetic mice. PLoS One. 2013, 8: e67716-10.1371/journal.pone.0067716.PubMedPubMedCentralCrossRef
71.
go back to reference Derde S, Vanhorebeek I, Ververs EJ, Vanhees I, Darras VM, Van Herck E, Larsson L, Van den Berghe G: Increasing intravenous glucose load in the presence of normoglycemia: effect on outcome and metabolism in critically ill rabbits. Crit Care Med. 2010, 38: 602-611. 10.1097/CCM.0b013e3181c03f65.PubMedCrossRef Derde S, Vanhorebeek I, Ververs EJ, Vanhees I, Darras VM, Van Herck E, Larsson L, Van den Berghe G: Increasing intravenous glucose load in the presence of normoglycemia: effect on outcome and metabolism in critically ill rabbits. Crit Care Med. 2010, 38: 602-611. 10.1097/CCM.0b013e3181c03f65.PubMedCrossRef
72.
go back to reference Saha JK, Xia J, Engle SK, Chen YF, Glaesner W, Jakubowski JA: A model of controlled acute hyperglycemia in rats: effects of insulin and glucagon-like peptide-1 analog. J Pharmacol Exp Ther. 2006, 316: 1159-1164.PubMedCrossRef Saha JK, Xia J, Engle SK, Chen YF, Glaesner W, Jakubowski JA: A model of controlled acute hyperglycemia in rats: effects of insulin and glucagon-like peptide-1 analog. J Pharmacol Exp Ther. 2006, 316: 1159-1164.PubMedCrossRef
73.
go back to reference Mesotten D, Van den Berghe G: Glycemic targets and approaches to management of the patient with critical illness. Curr Diab Rep. 2012, 12: 101-107. 10.1007/s11892-011-0241-8.PubMedCrossRef Mesotten D, Van den Berghe G: Glycemic targets and approaches to management of the patient with critical illness. Curr Diab Rep. 2012, 12: 101-107. 10.1007/s11892-011-0241-8.PubMedCrossRef
74.
go back to reference Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hebert PC, Heyland DK, Robinson BG: Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012, 367: 1108-1118.PubMedCrossRef Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hebert PC, Heyland DK, Robinson BG: Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012, 367: 1108-1118.PubMedCrossRef
75.
go back to reference Finfer S, Wernerman J, Preiser JC, Cass T, Desaive T, Hovorka R, Joseph JI, Kosiborod M, Krinsley J, Mackenzie I, Mesotten D, Schultz MJ, Scott MG, Slingerland R, Van den Berghe G, Van Herpe T: Clinical review: consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Crit Care. 2013, 17: 229-10.1186/cc12537.PubMedPubMedCentralCrossRef Finfer S, Wernerman J, Preiser JC, Cass T, Desaive T, Hovorka R, Joseph JI, Kosiborod M, Krinsley J, Mackenzie I, Mesotten D, Schultz MJ, Scott MG, Slingerland R, Van den Berghe G, Van Herpe T: Clinical review: consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Crit Care. 2013, 17: 229-10.1186/cc12537.PubMedPubMedCentralCrossRef
Metadata
Title
Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress
Authors
Leigh A Callahan
Gerald S Supinski
Publication date
01-06-2014
Publisher
BioMed Central
Published in
Critical Care / Issue 3/2014
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc13855

Other articles of this Issue 3/2014

Critical Care 3/2014 Go to the issue