Skip to main content
Top
Published in: Arthritis Research & Therapy 6/2003

Open Access 01-12-2003 | Research article

Impact of VIP and cAMP on the regulation of TNF-α and IL-10 production: implications for rheumatoid arthritis

Authors: Andrew D Foey, Dr, Sarah Field, Salman Ahmed, Abhilash Jain, Marc Feldmann, Fionula M Brennan, Richard Williams

Published in: Arthritis Research & Therapy | Issue 6/2003

Login to get access

Abstract

Vasoactive intestinal peptide (VIP) is an anti-inflammatory immunomodulatory neuropeptide with therapeutic potential demonstrated for collagen-induced arthritis. The aim of this study was to characterise its potential anti-arthritic effect on human monocytes, macrophages, T cells, and rheumatoid arthritis synovial membrane cells. Monocytes, macrophages, and T cells derived from human peripheral blood were treated with VIP and compared with other cAMP-elevating drugs for a range of activating stimuli. Cytokine production was assessed for cell cultures and, in addition, the ability of VIPs to activate cAMP response element binding protein. VIP partially suppressed monocyte- and macrophage-derived tumour necrosis factor α (TNF-α) with no effect on IL-10, whereas VIP fails to regulate IL-10 and TNF-α production by T lymphocytes. No such modulation of cytokine profile was observed for rheumatoid arthritis synovial membrane cells. Elevation of intracellular cAMP, on the other hand, potently suppressed macrophage TNF-α production and modulated T-cell response by inhibiting TNF-α and IFN-γ. VIP's lack of effect on IL-10 and its slight effect on TNF-α results from cAMP being rapidly degraded as the phosphodiesterase IV inhibitor, rolipram, rescues cAMP-dependent activation of cAMP response element binding protein. Interestingly, macrophages stimulated with phorbol 12-myristate 13-acetate/ionomycin displayed an augmented IL-10 response upon addition of dibutyryl cAMP, with corresponding downregulation in TNF-α, suggesting a complex interaction between protein kinase C and protein kinase A in cytokine regulation. In conclusion, VIP may represent an efficaceous anti-arthritic treatment modulating macrophage and T-cell cytokine profiles when used alongside a phosphodiesterase inhibitor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feldmann M, Brennan FM, Maini RN: Role of cytokines in rheumatoid arthritis. Ann Rev Immunol. 1996, 14: 397-440. 10.1146/annurev.immunol.14.1.397.CrossRef Feldmann M, Brennan FM, Maini RN: Role of cytokines in rheumatoid arthritis. Ann Rev Immunol. 1996, 14: 397-440. 10.1146/annurev.immunol.14.1.397.CrossRef
2.
go back to reference Kambayashi T, Jacob CO, Zhou D, Mazurek N, Fong M, Strassmann G: Cyclic nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNFα and IL-6 release by endotoxin-stimulated macrophages. J Immunol. 1995, 155: 4909-4916.PubMed Kambayashi T, Jacob CO, Zhou D, Mazurek N, Fong M, Strassmann G: Cyclic nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNFα and IL-6 release by endotoxin-stimulated macrophages. J Immunol. 1995, 155: 4909-4916.PubMed
3.
go back to reference Meisel C, Vogt K, Platzer C, Randow F, Liebenthal C, Volk H-D: Differential regulation of monocytic tumour necrosis factor-a and interleukin-10 expression. Eur J Immunology. 1996, 26: 1580-1586.CrossRef Meisel C, Vogt K, Platzer C, Randow F, Liebenthal C, Volk H-D: Differential regulation of monocytic tumour necrosis factor-a and interleukin-10 expression. Eur J Immunology. 1996, 26: 1580-1586.CrossRef
4.
go back to reference Ross SE, Williams RO, Mason LJ, Mauri C, Marinova-Mutafchieva L, Malfait A-M, Maini RN, Feldmann M: Suppression of TNFα expression, inhibition of Th1 activity, and amelioration of collagen-induced arthritis by rolipram. J Immunol. 1997, 159: 6253-6259.PubMed Ross SE, Williams RO, Mason LJ, Mauri C, Marinova-Mutafchieva L, Malfait A-M, Maini RN, Feldmann M: Suppression of TNFα expression, inhibition of Th1 activity, and amelioration of collagen-induced arthritis by rolipram. J Immunol. 1997, 159: 6253-6259.PubMed
5.
go back to reference Nyman U, Mussener A, Larsson E, Lorentzen J, Klareskog L: Amelioration of collagen II-induced arthritis in rats by the type IV phosphodiesterase inhibitor Rolipram. Clin Exp Immunol. 1997, 108: 415-419. 10.1046/j.1365-2249.1997.3931291.x.PubMedCentralCrossRefPubMed Nyman U, Mussener A, Larsson E, Lorentzen J, Klareskog L: Amelioration of collagen II-induced arthritis in rats by the type IV phosphodiesterase inhibitor Rolipram. Clin Exp Immunol. 1997, 108: 415-419. 10.1046/j.1365-2249.1997.3931291.x.PubMedCentralCrossRefPubMed
6.
go back to reference Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP: Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med. 2001, 7: 563-568. 10.1038/87887.CrossRefPubMed Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP: Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med. 2001, 7: 563-568. 10.1038/87887.CrossRefPubMed
7.
go back to reference Williams RO: Therapeutic effect of vasoactive intestinal peptide in collagen-induced arthritis. Arthritis Rheum. 2002, 46: 271-273. 10.1002/1529-0131(200201)46:1<271::AID-ART10039>3.0.CO;2-C.CrossRefPubMed Williams RO: Therapeutic effect of vasoactive intestinal peptide in collagen-induced arthritis. Arthritis Rheum. 2002, 46: 271-273. 10.1002/1529-0131(200201)46:1<271::AID-ART10039>3.0.CO;2-C.CrossRefPubMed
8.
go back to reference Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNFα production by macrophages: in vitro and in vivo studies. J Immunol. 1999, 162: 2358-2367.PubMed Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNFα production by macrophages: in vitro and in vivo studies. J Immunol. 1999, 162: 2358-2367.PubMed
9.
go back to reference Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-a and IL-6. J Immunol. 1999, 162: 1200-1205.PubMed Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-a and IL-6. J Immunol. 1999, 162: 1200-1205.PubMed
10.
go back to reference Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, Gomariz RP, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumour necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem. 1998, 273: 31427-31436. 10.1074/jbc.273.47.31427.CrossRefPubMed Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, Gomariz RP, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumour necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem. 1998, 273: 31427-31436. 10.1074/jbc.273.47.31427.CrossRefPubMed
11.
go back to reference Martinez C, Delgado M, Pozo D, Leceta J, Calvo JR, Ganea D, Gomariz RP: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol. 1998, 63: 591-601.PubMed Martinez C, Delgado M, Pozo D, Leceta J, Calvo JR, Ganea D, Gomariz RP: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol. 1998, 63: 591-601.PubMed
12.
go back to reference Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D: VIP and PACAP inhibit IL-12 production in LPS-stimulated macrophages. Subsequent effect on IFNgamma synthesis by T cells. J Neuroimmunol. 1999, 96: 167-181. 10.1016/S0165-5728(99)00023-5.CrossRefPubMed Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D: VIP and PACAP inhibit IL-12 production in LPS-stimulated macrophages. Subsequent effect on IFNgamma synthesis by T cells. J Neuroimmunol. 1999, 96: 167-181. 10.1016/S0165-5728(99)00023-5.CrossRefPubMed
13.
go back to reference Delgado M, Ganea D: Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol. 2001, 167: 966-975.CrossRefPubMed Delgado M, Ganea D: Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol. 2001, 167: 966-975.CrossRefPubMed
14.
go back to reference Delgado M, Ganea D: Vasoactive intestinal peptide inhibits IL-8 production in human monocytes. Biochem Biophys Res Commun. 2003, 301: 825-832. 10.1016/S0006-291X(03)00059-7.CrossRefPubMed Delgado M, Ganea D: Vasoactive intestinal peptide inhibits IL-8 production in human monocytes. Biochem Biophys Res Commun. 2003, 301: 825-832. 10.1016/S0006-291X(03)00059-7.CrossRefPubMed
15.
go back to reference Delgado M, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kB and IFN regulatory factor 1 activation. J Immunol. 1991, 162: 4685-4696. Delgado M, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kB and IFN regulatory factor 1 activation. J Immunol. 1991, 162: 4685-4696.
16.
go back to reference Delgado M, Munoz-Elias E, Gomariz RP, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J Immunol. 1999, 162: 1707-1716.PubMed Delgado M, Munoz-Elias E, Gomariz RP, Ganea D: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J Immunol. 1999, 162: 1707-1716.PubMed
17.
go back to reference Delgado M, Ganea D: Cutting edge: is vasoactive intestinal peptide a type 2 cytokine?. J Immunol. 2001, 166: 2907-2912.CrossRefPubMed Delgado M, Ganea D: Cutting edge: is vasoactive intestinal peptide a type 2 cytokine?. J Immunol. 2001, 166: 2907-2912.CrossRefPubMed
18.
go back to reference Ganea D: Regulatory effects of vasoactive intestinal peptide on cytokine production in central and peripheral lymphoid organs. Adv Neuroimmunol. 1996, 6: 61-74.CrossRefPubMed Ganea D: Regulatory effects of vasoactive intestinal peptide on cytokine production in central and peripheral lymphoid organs. Adv Neuroimmunol. 1996, 6: 61-74.CrossRefPubMed
19.
go back to reference Said S: VIP as a modulator of lung inflammation and airway constriction. Am Rev Respir Dis. 1991, 143: 22-24.CrossRef Said S: VIP as a modulator of lung inflammation and airway constriction. Am Rev Respir Dis. 1991, 143: 22-24.CrossRef
20.
go back to reference Pozo D, Delgado M, Martinez C, Guerrero JM, Leceta J, Gomariz RP, Calvo JR: Immunobiology of vasoactive intestinal peptide (VIP). Immunol Today. 2000, 21: 7-11. 10.1016/S0167-5699(99)01525-X.CrossRefPubMed Pozo D, Delgado M, Martinez C, Guerrero JM, Leceta J, Gomariz RP, Calvo JR: Immunobiology of vasoactive intestinal peptide (VIP). Immunol Today. 2000, 21: 7-11. 10.1016/S0167-5699(99)01525-X.CrossRefPubMed
21.
go back to reference Abrams J, Roncorolo MG, Yssel H, Andersson U, Gleich GJ, Silver J: Strategies and practice of anti-cytokine monoclonal antibody development: immunoassay of IL-10 and IL-5 in clinical samples. Immunol Rev. 1992, 127: 5-24.CrossRefPubMed Abrams J, Roncorolo MG, Yssel H, Andersson U, Gleich GJ, Silver J: Strategies and practice of anti-cytokine monoclonal antibody development: immunoassay of IL-10 and IL-5 in clinical samples. Immunol Rev. 1992, 127: 5-24.CrossRefPubMed
22.
go back to reference Engelberts I, Moller A, Schoen GJ, van der Linden CJ, Buurmann WA: Evaluation of measurement of human TNF in plasma by ELISA. Lymphokine Cytokine Res. 1991, 10: 69-76.PubMed Engelberts I, Moller A, Schoen GJ, van der Linden CJ, Buurmann WA: Evaluation of measurement of human TNF in plasma by ELISA. Lymphokine Cytokine Res. 1991, 10: 69-76.PubMed
23.
go back to reference Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BMJ, Brennan FM: Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNFα: Role of the p38 and p42/44 mitogen-activated protein kinases. J Immunol. 1998, 160: 920-928.PubMed Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BMJ, Brennan FM: Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNFα: Role of the p38 and p42/44 mitogen-activated protein kinases. J Immunol. 1998, 160: 920-928.PubMed
24.
go back to reference Dewitt D, Gourlet P, Amraoui Z, Vertongen P, Willems F, Robberecht P, Goldman M: The vasoactive intestinal peptide analogue RO25-1553 inhibits the production of TNF and IL-12 by LPS-activated monocytes. Immunol Lett. 1998, 60: 57-60. 10.1016/S0165-2478(97)00129-6.CrossRef Dewitt D, Gourlet P, Amraoui Z, Vertongen P, Willems F, Robberecht P, Goldman M: The vasoactive intestinal peptide analogue RO25-1553 inhibits the production of TNF and IL-12 by LPS-activated monocytes. Immunol Lett. 1998, 60: 57-60. 10.1016/S0165-2478(97)00129-6.CrossRef
25.
go back to reference Hernanz A, Tato E, De la Fuente M, de Miguel E, Arnalich F: Differential effects of gastrin-releasing peptide, neuropeptide Y, somatostatin and vasoactive intestinal peptide on interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha production by whole blood cells from healthy young and old subjects. J Neuroimmunol. 1996, 71: 25-30. 10.1016/S0165-5728(96)00118-X.CrossRefPubMed Hernanz A, Tato E, De la Fuente M, de Miguel E, Arnalich F: Differential effects of gastrin-releasing peptide, neuropeptide Y, somatostatin and vasoactive intestinal peptide on interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha production by whole blood cells from healthy young and old subjects. J Neuroimmunol. 1996, 71: 25-30. 10.1016/S0165-5728(96)00118-X.CrossRefPubMed
26.
go back to reference Foxwell B, Brown K, Bondeson J, Clarke C, de Martin R, Brennan F, Feldmann M: Efficient adenoviral infection with IkappaB alpha reveals that macrophage tumour necrosis factor alpha production in rheumatoid arthritis is NF-kappaB dependent. Proc Natl Acad Sci USA. 1998, 95: 8211-8215. 10.1073/pnas.95.14.8211.PubMedCentralCrossRefPubMed Foxwell B, Brown K, Bondeson J, Clarke C, de Martin R, Brennan F, Feldmann M: Efficient adenoviral infection with IkappaB alpha reveals that macrophage tumour necrosis factor alpha production in rheumatoid arthritis is NF-kappaB dependent. Proc Natl Acad Sci USA. 1998, 95: 8211-8215. 10.1073/pnas.95.14.8211.PubMedCentralCrossRefPubMed
Metadata
Title
Impact of VIP and cAMP on the regulation of TNF-α and IL-10 production: implications for rheumatoid arthritis
Authors
Andrew D Foey, Dr
Sarah Field
Salman Ahmed
Abhilash Jain
Marc Feldmann
Fionula M Brennan
Richard Williams
Publication date
01-12-2003
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 6/2003
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar999

Other articles of this Issue 6/2003

Arthritis Research & Therapy 6/2003 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.