Skip to main content
Top
Published in: Arthritis Research & Therapy 3/2010

Open Access 01-06-2010 | Research article

Mechanical signals control SOX-9, VEGF, and c-Mycexpression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes

Authors: Priyangi M Perera, Ewa Wypasek, Shashi Madhavan, Birgit Rath-Deschner, Jie Liu, Jin Nam, Bjoern Rath, Yan Huang, James Deschner, Nicholas Piesco, Chuanyue Wu, Sudha Agarwal

Published in: Arthritis Research & Therapy | Issue 3/2010

Login to get access

Abstract

Introduction

The importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) proliferation are upregulated by the physiological levels of mechanical forces. In this study, we investigated intracellular mechanisms underlying reparative actions of mechanical signals during inflammation.

Methods

ACs isolated from articular cartilage were exposed to low/physiologic levels of dynamic strain in the presence of IL-1β. The cell extracts were probed for differential activation/inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade. The regulation of gene transcription was examined by real-time polymerase chain reaction.

Results

Mechanoactivation, but not IL-1β treatment, of ACs initiated integrin-linked kinase activation. Mechanical signals induced activation and subsequent C-Raf-mediated activation of MAP kinases (MEK1/2). However, IL-1β activated B-Raf kinase activity. Dynamic strain did not induce B-Raf activation but instead inhibited IL-1β-induced B-Raf activation. Both mechanical signals and IL-1β induced ERK1/2 phosphorylation but discrete gene expression. ERK1/2 activation by mechanical forces induced SRY-related protein-9 (SOX-9), vascular endothelial cell growth factor (VEGF), and c-Myc mRNA expression and AC proliferation. However, IL-1β did not induce SOX-9, VEGF, and c-Myc gene expression and inhibited AC cell proliferation. More importantly, SOX-9, VEGF, and Myc gene transcription and AC proliferation induced by mechanical signals were sustained in the presence of IL-1β.

Conclusions

The findings suggest that mechanical signals may sustain their effects in proinflammatory environments by regulating key molecules in the MAP kinase signaling cascade. Furthermore, the findings point to the potential of mechanosignaling in cartilage repair during inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zuscik MJ, Hilton MJ, Zhang X, Chen D, O'Keefe RJ: Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008, 118: 429-438. 10.1172/JCI34174.PubMedCentralCrossRefPubMed Zuscik MJ, Hilton MJ, Zhang X, Chen D, O'Keefe RJ: Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008, 118: 429-438. 10.1172/JCI34174.PubMedCentralCrossRefPubMed
2.
go back to reference Chiquet M, Gelman L, Lutz R, Maier S: From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009, 1793: 911-920. 10.1016/j.bbamcr.2009.01.012.CrossRefPubMed Chiquet M, Gelman L, Lutz R, Maier S: From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009, 1793: 911-920. 10.1016/j.bbamcr.2009.01.012.CrossRefPubMed
3.
go back to reference Dossumbekova A, Anghelina M, Madhavan S, He L, Quan N, Knobloch T, Agarwal S: Biomechanical signals inhibit IKK activity to attenuate NF-kappaB transcription activity in inflamed chondrocytes. Arthritis Rheum. 2007, 56: 3284-3296. 10.1002/art.22933.CrossRefPubMed Dossumbekova A, Anghelina M, Madhavan S, He L, Quan N, Knobloch T, Agarwal S: Biomechanical signals inhibit IKK activity to attenuate NF-kappaB transcription activity in inflamed chondrocytes. Arthritis Rheum. 2007, 56: 3284-3296. 10.1002/art.22933.CrossRefPubMed
4.
go back to reference Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N: Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum. 2004, 50: 3541-3548. 10.1002/art.20601.CrossRefPubMed Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N: Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum. 2004, 50: 3541-3548. 10.1002/art.20601.CrossRefPubMed
5.
go back to reference Wang B, Yang Y, Friedman PA: Na/H exchange regulatory factor 1, a novel AKT-associating protein, regulates extracellular signal-regulated kinase signaling through a B-raf-mediated pathway. Mol Biol Cell. 2008, 19: 1637-1645. 10.1091/mbc.E07-11-1114.PubMedCentralCrossRefPubMed Wang B, Yang Y, Friedman PA: Na/H exchange regulatory factor 1, a novel AKT-associating protein, regulates extracellular signal-regulated kinase signaling through a B-raf-mediated pathway. Mol Biol Cell. 2008, 19: 1637-1645. 10.1091/mbc.E07-11-1114.PubMedCentralCrossRefPubMed
6.
go back to reference Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL: Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 2006, 54: 1888-1896. 10.1002/art.21831.CrossRefPubMed Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL: Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 2006, 54: 1888-1896. 10.1002/art.21831.CrossRefPubMed
7.
go back to reference McNulty AL, Estes BT, Wilusz RE, Weinberg JB, Guilak F: Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthritis Cartilage. 2010, 18: 830-838. 10.1016/j.joca.2010.02.009.PubMedCentralCrossRefPubMed McNulty AL, Estes BT, Wilusz RE, Weinberg JB, Guilak F: Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthritis Cartilage. 2010, 18: 830-838. 10.1016/j.joca.2010.02.009.PubMedCentralCrossRefPubMed
8.
go back to reference Nam J, Aguda B, Agarwal S: Biomechanical thresholds regulate inflammation through the NF-κB pathway: experiments and modeling. PLoS ONE. 2009, 4: e5262-10.1371/journal.pone.0005262.PubMedCentralCrossRefPubMed Nam J, Aguda B, Agarwal S: Biomechanical thresholds regulate inflammation through the NF-κB pathway: experiments and modeling. PLoS ONE. 2009, 4: e5262-10.1371/journal.pone.0005262.PubMedCentralCrossRefPubMed
9.
go back to reference Chowdhury TT, Bader DL, Lee DA: Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthritis Cartilage. 2003, 11: 688-696. 10.1016/S1063-4584(03)00149-3.CrossRefPubMed Chowdhury TT, Bader DL, Lee DA: Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthritis Cartilage. 2003, 11: 688-696. 10.1016/S1063-4584(03)00149-3.CrossRefPubMed
10.
go back to reference Wang N, Tytell JD, Ingber DE: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009, 10: 75-82. 10.1038/nrm2594.CrossRefPubMed Wang N, Tytell JD, Ingber DE: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009, 10: 75-82. 10.1038/nrm2594.CrossRefPubMed
11.
go back to reference Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N: Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA. 2008, 105: 6626-6631. 10.1073/pnas.0711704105.PubMedCentralCrossRefPubMed Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N: Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA. 2008, 105: 6626-6631. 10.1073/pnas.0711704105.PubMedCentralCrossRefPubMed
12.
go back to reference Ryan JA, Eisner EA, Duraine G, You Z, Hari Reddi A: Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine. J Tissue Eng Regen Med. 2009, 3: 107-116. 10.1002/term.146.PubMedCentralCrossRefPubMed Ryan JA, Eisner EA, Duraine G, You Z, Hari Reddi A: Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine. J Tissue Eng Regen Med. 2009, 3: 107-116. 10.1002/term.146.PubMedCentralCrossRefPubMed
13.
go back to reference Raducanu A, Hunziker EB, Drosse I, Aszodi A: {Beta}1 integrin deficiency results in multiple abnormalities of the knee joint. J Biol Chem. 2009, 284: 23780-23792. 10.1074/jbc.M109.039347.PubMedCentralCrossRefPubMed Raducanu A, Hunziker EB, Drosse I, Aszodi A: {Beta}1 integrin deficiency results in multiple abnormalities of the knee joint. J Biol Chem. 2009, 284: 23780-23792. 10.1074/jbc.M109.039347.PubMedCentralCrossRefPubMed
14.
go back to reference Maier S, Lutz R, Gelman L, Sarasa-Renedo A, Schenk S, Grashoff C, Chiquet M: Tenascin-C induction by cyclic strain requires integrin-linked kinase. Biochim Biophys Acta. 2008, 1783: 1150-1162. 10.1016/j.bbamcr.2008.01.013.CrossRefPubMed Maier S, Lutz R, Gelman L, Sarasa-Renedo A, Schenk S, Grashoff C, Chiquet M: Tenascin-C induction by cyclic strain requires integrin-linked kinase. Biochim Biophys Acta. 2008, 1783: 1150-1162. 10.1016/j.bbamcr.2008.01.013.CrossRefPubMed
15.
go back to reference Wu C: PINCH, N(i)ck and the ILK: network wiring at cell-matrix adhesions. Trends Cell Biol. 2005, 15: 460-466. 10.1016/j.tcb.2005.07.002.CrossRefPubMed Wu C: PINCH, N(i)ck and the ILK: network wiring at cell-matrix adhesions. Trends Cell Biol. 2005, 15: 460-466. 10.1016/j.tcb.2005.07.002.CrossRefPubMed
16.
go back to reference Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LE, Ingber DE: A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature. 2009, 457: 1103-1108. 10.1038/nature07765.PubMedCentralCrossRefPubMed Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LE, Ingber DE: A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature. 2009, 457: 1103-1108. 10.1038/nature07765.PubMedCentralCrossRefPubMed
17.
go back to reference Gray DS, Liu WF, Shen CJ, Bhadriraju K, Nelson CM, Chen CS: Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp Cell Res. 2008, 314: 2846-2854. 10.1016/j.yexcr.2008.06.023.PubMedCentralCrossRefPubMed Gray DS, Liu WF, Shen CJ, Bhadriraju K, Nelson CM, Chen CS: Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp Cell Res. 2008, 314: 2846-2854. 10.1016/j.yexcr.2008.06.023.PubMedCentralCrossRefPubMed
18.
go back to reference McKay MM, Morrison DK: Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007, 26: 3113-3121. 10.1038/sj.onc.1210394.CrossRefPubMed McKay MM, Morrison DK: Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007, 26: 3113-3121. 10.1038/sj.onc.1210394.CrossRefPubMed
19.
go back to reference Torii S, Nakayama K, Yamamoto T, Nishida E: Regulatory mechanisms and function of ERK MAP kinases. J Biochem. 2004, 136: 557-561. 10.1093/jb/mvh159.CrossRefPubMed Torii S, Nakayama K, Yamamoto T, Nishida E: Regulatory mechanisms and function of ERK MAP kinases. J Biochem. 2004, 136: 557-561. 10.1093/jb/mvh159.CrossRefPubMed
20.
go back to reference Zhang M, Zhou Q, Liang QQ, Li CG, Holz JD, Tang D, Sheu TJ, Li TF, Shi Q, Wang YJ: IGF-1 regulation of type II collagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis Cartilage. 2009, 17: 100-106. 10.1016/j.joca.2008.05.007.CrossRefPubMed Zhang M, Zhou Q, Liang QQ, Li CG, Holz JD, Tang D, Sheu TJ, Li TF, Shi Q, Wang YJ: IGF-1 regulation of type II collagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis Cartilage. 2009, 17: 100-106. 10.1016/j.joca.2008.05.007.CrossRefPubMed
21.
go back to reference Jiang B, Brecher P, Cohen RA: Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arterioscler Thromb Vasc Biol. 2001, 21: 1915-1920. 10.1161/hq1201.099424.CrossRefPubMed Jiang B, Brecher P, Cohen RA: Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arterioscler Thromb Vasc Biol. 2001, 21: 1915-1920. 10.1161/hq1201.099424.CrossRefPubMed
22.
go back to reference Ory S, Morrison DK: Signal transduction: implications for ras-dependent ERK signaling. Curr Biol. 2004, 14: R277-278. 10.1016/j.cub.2004.03.023.CrossRefPubMed Ory S, Morrison DK: Signal transduction: implications for ras-dependent ERK signaling. Curr Biol. 2004, 14: R277-278. 10.1016/j.cub.2004.03.023.CrossRefPubMed
23.
go back to reference Kolettas E, Muir HI, Barrett JC, Hardingham TE: Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of sox-9 transcription factor. Rheumatology (Oxford). 2001, 40: 1146-1156. 10.1093/rheumatology/40.10.1146.CrossRef Kolettas E, Muir HI, Barrett JC, Hardingham TE: Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of sox-9 transcription factor. Rheumatology (Oxford). 2001, 40: 1146-1156. 10.1093/rheumatology/40.10.1146.CrossRef
24.
go back to reference Li KW, Wang AS, Sah RL: Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. Arthritis Rheum. 2003, 48: 689-699. 10.1002/art.10849.CrossRefPubMed Li KW, Wang AS, Sah RL: Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. Arthritis Rheum. 2003, 48: 689-699. 10.1002/art.10849.CrossRefPubMed
25.
go back to reference Madhavan S, Anghelina M, Sjostrom D, Dossumbekova A, Guttridge DC, Agarwal S: Biomechanical signals suppress TAK1 activation to inhibit NF-{kappa}B transcriptional activation in fibrochondrocytes. J Immunol. 2007, 179: 6246-6254.CrossRefPubMed Madhavan S, Anghelina M, Sjostrom D, Dossumbekova A, Guttridge DC, Agarwal S: Biomechanical signals suppress TAK1 activation to inhibit NF-{kappa}B transcriptional activation in fibrochondrocytes. J Immunol. 2007, 179: 6246-6254.CrossRefPubMed
26.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
27.
go back to reference Li F, Zhang Y, Wu C: Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J Cell Sci. 1999, 112 (Pt 24): 4589-4599.PubMed Li F, Zhang Y, Wu C: Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J Cell Sci. 1999, 112 (Pt 24): 4589-4599.PubMed
28.
go back to reference Li Y, Yang J, Dai C, Wu C, Liu Y: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest. 2003, 112: 503-516.PubMedCentralCrossRefPubMed Li Y, Yang J, Dai C, Wu C, Liu Y: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest. 2003, 112: 503-516.PubMedCentralCrossRefPubMed
29.
go back to reference Wu C, Dedhar S: Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001, 155: 505-510. 10.1083/jcb.200108077.PubMedCentralCrossRefPubMed Wu C, Dedhar S: Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001, 155: 505-510. 10.1083/jcb.200108077.PubMedCentralCrossRefPubMed
30.
go back to reference Chowdhury TT, Arghandawi S, Brand J, Akanji OO, Bader DL, Salter DM, Lee DA: Dynamic compression counteracts IL-1beta induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs. Arthritis Res Ther. 2008, 10: R35-10.1186/ar2389.PubMedCentralCrossRefPubMed Chowdhury TT, Arghandawi S, Brand J, Akanji OO, Bader DL, Salter DM, Lee DA: Dynamic compression counteracts IL-1beta induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs. Arthritis Res Ther. 2008, 10: R35-10.1186/ar2389.PubMedCentralCrossRefPubMed
31.
go back to reference Nam J, Rath B, Knobloch T, Lannutti JJ, Agarwal S: Novel electrospun scaffolds for the molecular analysis of chondrocytes under dynamic compression. Tissue Eng Part A. 2009, 15: 513-523. 10.1089/ten.tea.2007.0353.PubMedCentralCrossRefPubMed Nam J, Rath B, Knobloch T, Lannutti JJ, Agarwal S: Novel electrospun scaffolds for the molecular analysis of chondrocytes under dynamic compression. Tissue Eng Part A. 2009, 15: 513-523. 10.1089/ten.tea.2007.0353.PubMedCentralCrossRefPubMed
32.
go back to reference Deschner J, Hofman CR, Piesco NP, Agarwal S: Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care. 2003, 6: 289-293. 10.1097/00075197-200305000-00004.PubMed Deschner J, Hofman CR, Piesco NP, Agarwal S: Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care. 2003, 6: 289-293. 10.1097/00075197-200305000-00004.PubMed
33.
go back to reference Liu WF, Nelson CM, Tan JL, Chen CS: Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res. 2007, 101: e44-52. 10.1161/CIRCRESAHA.107.158329.CrossRefPubMed Liu WF, Nelson CM, Tan JL, Chen CS: Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res. 2007, 101: e44-52. 10.1161/CIRCRESAHA.107.158329.CrossRefPubMed
34.
go back to reference Kiel C, Serrano L: Cell type-specific importance of ras-c-raf complex association rate constants for MAPK signaling. Sci Signal. 2009, 2: ra38-10.1126/scisignal.2000397.CrossRefPubMed Kiel C, Serrano L: Cell type-specific importance of ras-c-raf complex association rate constants for MAPK signaling. Sci Signal. 2009, 2: ra38-10.1126/scisignal.2000397.CrossRefPubMed
35.
go back to reference Chambard JC, Lefloch R, Pouyssegur J, Lenormand P: ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007, 1773: 1299-1310. 10.1016/j.bbamcr.2006.11.010.CrossRefPubMed Chambard JC, Lefloch R, Pouyssegur J, Lenormand P: ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007, 1773: 1299-1310. 10.1016/j.bbamcr.2006.11.010.CrossRefPubMed
36.
go back to reference Bluteau G, Julien M, Magne D, Mallein-Gerin F, Weiss P, Daculsi G, Guicheux J: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone. 2007, 40: 568-576. 10.1016/j.bone.2006.09.024.CrossRefPubMed Bluteau G, Julien M, Magne D, Mallein-Gerin F, Weiss P, Daculsi G, Guicheux J: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone. 2007, 40: 568-576. 10.1016/j.bone.2006.09.024.CrossRefPubMed
37.
go back to reference Molina JR, Adjei AA: The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006, 1: 7-9. 10.1097/01243894-200601000-00004.CrossRefPubMed Molina JR, Adjei AA: The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006, 1: 7-9. 10.1097/01243894-200601000-00004.CrossRefPubMed
38.
go back to reference Lee T, Yao G, Nevins J, You L: Sensing and integration of erk and PI3K signals by myc. PLoS Comput Biol. 2008, 4: e1000013-10.1371/journal.pcbi.1000013.PubMedCentralCrossRefPubMed Lee T, Yao G, Nevins J, You L: Sensing and integration of erk and PI3K signals by myc. PLoS Comput Biol. 2008, 4: e1000013-10.1371/journal.pcbi.1000013.PubMedCentralCrossRefPubMed
39.
go back to reference Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR: Multiple ras-dependent phosphorylation pathways regulate myc protein stability. Genes Dev. 2000, 14: 2501-2514. 10.1101/gad.836800.PubMedCentralCrossRefPubMed Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR: Multiple ras-dependent phosphorylation pathways regulate myc protein stability. Genes Dev. 2000, 14: 2501-2514. 10.1101/gad.836800.PubMedCentralCrossRefPubMed
40.
go back to reference Malumbres M, Pellicer A: RAS pathways to cell cycle control and cell transformation. Front Biosci. 1998, 3: d887-912.PubMed Malumbres M, Pellicer A: RAS pathways to cell cycle control and cell transformation. Front Biosci. 1998, 3: d887-912.PubMed
41.
go back to reference Tew SR, Hardingham TE: Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. J Biol Chem. 2006, 281: 39471-39479. 10.1074/jbc.M604322200.CrossRefPubMed Tew SR, Hardingham TE: Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. J Biol Chem. 2006, 281: 39471-39479. 10.1074/jbc.M604322200.CrossRefPubMed
Metadata
Title
Mechanical signals control SOX-9, VEGF, and c-Mycexpression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes
Authors
Priyangi M Perera
Ewa Wypasek
Shashi Madhavan
Birgit Rath-Deschner
Jie Liu
Jin Nam
Bjoern Rath
Yan Huang
James Deschner
Nicholas Piesco
Chuanyue Wu
Sudha Agarwal
Publication date
01-06-2010
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 3/2010
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar3039

Other articles of this Issue 3/2010

Arthritis Research & Therapy 3/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.