Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2012

Open Access 01-12-2012 | Rapid communication

JAK2V617F and p53 mutations coexist in erythroleukemia and megakaryoblastic leukemic cell lines

Authors: Wanke Zhao, Yanhong Du, Wanting Tina Ho, Xueqi Fu, Zhizhuang Joe Zhao

Published in: Experimental Hematology & Oncology | Issue 1/2012

Login to get access

Abstract

Background

JAK2V617F, a gain-of-function mutant form of tyrosine kinase JAK2, is found in the majority of patients with Ph- myeloproliferative neoplasms (MPNs), a group of chronic hematological diseases that often lead to acute leukemia. The current study is intended to find other gene mutations that collaborate with JAK2V617F to cause leukemic transformation.

Methods

Total RNA and genomic DNA were isolated from two JAK2V617F-positive cell lines, namely, erythroleukemic HEL and megakaryoblastic leukemic SET-2 cells. Candidate genes were amplified by PCR and further sequenced.

Results

Homozygous mutations of the TP53 gene which encodes tumor suppressor p53 were found in HEL and SET-2 cells. While HEL cells, which have homozygous JAK2V617F, contain a rare M133K p53 mutation, SET-2 cells, which have a heterozygous JAK2V617F mutation, contain a common R248W p53 alteration. Western blot analyses revealed high levels of p53 expression in both cells. M133K and R248W are located in the DNA binding domain of p53. Structural analyses revealed that they potentially disrupt the interaction of p53 with DNA, thereby causing loss of p53 function.

Conclusions

JAK2V617F and p53 mutations coexist in leukemia cells. We believe that JAK2V617F is able to drive leukemic transformation when the function of tumor suppressor p53 is lost. The interplay of JAK2V617F with p53 may affect the progression of MPNs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levine RL, Pardanani A, Tefferi A, Gilliland DG: Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 2007, 7: 673–683. 10.1038/nrc2210PubMedCrossRef Levine RL, Pardanani A, Tefferi A, Gilliland DG: Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 2007, 7: 673–683. 10.1038/nrc2210PubMedCrossRef
2.
go back to reference Zhao W, Gao R, Lee J, Xing S, Ho WT, Fu X, Li S, Zhao ZJ: Relevance of JAK2V617F positivity to hematological diseases–survey of samples from a clinical genetics laboratory. J Hematol Oncol 2011, 4: 4. 10.1186/1756-8722-4-4PubMedCentralPubMedCrossRef Zhao W, Gao R, Lee J, Xing S, Ho WT, Fu X, Li S, Zhao ZJ: Relevance of JAK2V617F positivity to hematological diseases–survey of samples from a clinical genetics laboratory. J Hematol Oncol 2011, 4: 4. 10.1186/1756-8722-4-4PubMedCentralPubMedCrossRef
3.
go back to reference Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, Zhao ZJ: Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005, 280: 22788–22792. 10.1074/jbc.C500138200PubMedCentralPubMedCrossRef Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, Zhao ZJ: Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005, 280: 22788–22792. 10.1074/jbc.C500138200PubMedCentralPubMedCrossRef
4.
go back to reference Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X, Li Q, Fu X, Xu M, Zhao ZJ: Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008, 111: 5109–5117. 10.1182/blood-2007-05-091579PubMedCentralPubMedCrossRef Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X, Li Q, Fu X, Xu M, Zhao ZJ: Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008, 111: 5109–5117. 10.1182/blood-2007-05-091579PubMedCentralPubMedCrossRef
5.
go back to reference Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG: Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 2010, 115: 3589–3597. 10.1182/blood-2009-04-215848PubMedCentralPubMedCrossRef Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG: Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 2010, 115: 3589–3597. 10.1182/blood-2009-04-215848PubMedCentralPubMedCrossRef
6.
7.
go back to reference Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007, 28: 622–629. 10.1002/humu.20495PubMedCrossRef Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007, 28: 622–629. 10.1002/humu.20495PubMedCrossRef
8.
go back to reference Donehower LA, Lozano G: 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009, 9: 831–841. 10.1038/nrc2731PubMedCrossRef Donehower LA, Lozano G: 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009, 9: 831–841. 10.1038/nrc2731PubMedCrossRef
9.
go back to reference Liu Y, Elf SE, Asai T, Miyata Y, Liu Y, Sashida G, Huang G, Di Giandomenico S, Koff A, Nimer SD: The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle 2009, 8: 3120–3124. 10.4161/cc.8.19.9627PubMedCrossRef Liu Y, Elf SE, Asai T, Miyata Y, Liu Y, Sashida G, Huang G, Di Giandomenico S, Koff A, Nimer SD: The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle 2009, 8: 3120–3124. 10.4161/cc.8.19.9627PubMedCrossRef
10.
go back to reference Quentmeier H, MacLeod RA, Zaborski M, Drexler HG: JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia 2006, 20: 471–476. 10.1038/sj.leu.2404081PubMedCrossRef Quentmeier H, MacLeod RA, Zaborski M, Drexler HG: JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia 2006, 20: 471–476. 10.1038/sj.leu.2404081PubMedCrossRef
11.
go back to reference Martin P, Papayannopoulou T: HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 1982, 216: 1233–1235. 10.1126/science.6177045PubMedCrossRef Martin P, Papayannopoulou T: HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 1982, 216: 1233–1235. 10.1126/science.6177045PubMedCrossRef
12.
go back to reference Uozumi K, Otsuka M, Ohno N, Moriyama T, Suzuki S, Shimotakahara S, Matsumura I, Hanada S, Arima T: Establishment and characterization of a new human megakaryoblastic cell line (SET-2) that spontaneously matures to megakaryocytes and produces platelet-like particles. Leukemia 2000, 14: 142–152. 10.1038/sj.leu.2401608PubMedCrossRef Uozumi K, Otsuka M, Ohno N, Moriyama T, Suzuki S, Shimotakahara S, Matsumura I, Hanada S, Arima T: Establishment and characterization of a new human megakaryoblastic cell line (SET-2) that spontaneously matures to megakaryocytes and produces platelet-like particles. Leukemia 2000, 14: 142–152. 10.1038/sj.leu.2401608PubMedCrossRef
13.
14.
go back to reference Sutton BC, Allen RA, Zhao ZJ, Dunn ST: Detection of the JAK2V617F mutation by asymmetric PCR and melt curve analysis. Cancer Biomark 2007, 3: 315–324.PubMed Sutton BC, Allen RA, Zhao ZJ, Dunn ST: Detection of the JAK2V617F mutation by asymmetric PCR and melt curve analysis. Cancer Biomark 2007, 3: 315–324.PubMed
15.
go back to reference Cho Y, Gorina S, Jeffrey PD, Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994, 265: 346–355. 10.1126/science.8023157PubMedCrossRef Cho Y, Gorina S, Jeffrey PD, Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994, 265: 346–355. 10.1126/science.8023157PubMedCrossRef
16.
go back to reference Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T: Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 2008, 22: 1539–1541. 10.1038/leu.2008.143PubMedCrossRef Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T: Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 2008, 22: 1539–1541. 10.1038/leu.2008.143PubMedCrossRef
17.
go back to reference Gaidano G, Pastore C, Santini V, Nomdedeu J, Gamberi B, Capello D, Vischia F, Resegotti L, Mazza U, Ferrini PR, Lo Coco F, Saglio G: Genetic lesions associated with blastic transformation of polycythemia vera and essential thrombocythemia. Genes Chromosomes Cancer 1997, 19: 250–255. 10.1002/(SICI)1098-2264(199708)19:4<250::AID-GCC7>3.0.CO;2-WPubMedCrossRef Gaidano G, Pastore C, Santini V, Nomdedeu J, Gamberi B, Capello D, Vischia F, Resegotti L, Mazza U, Ferrini PR, Lo Coco F, Saglio G: Genetic lesions associated with blastic transformation of polycythemia vera and essential thrombocythemia. Genes Chromosomes Cancer 1997, 19: 250–255. 10.1002/(SICI)1098-2264(199708)19:4<250::AID-GCC7>3.0.CO;2-WPubMedCrossRef
18.
go back to reference Tsurumi S, Nakamura Y, Maki K, Omine M, Fujita K, Okamura T, Niho Y, Hashimoto S, Kanno K, Suzuki K, Hangaishi A, Ogawa S, Hirai H, Mitani K: N-ras and p53 gene mutations in Japanese patients with myeloproliferative disorders. Am J Hematol 2002, 71: 131–133. 10.1002/ajh.10188PubMedCrossRef Tsurumi S, Nakamura Y, Maki K, Omine M, Fujita K, Okamura T, Niho Y, Hashimoto S, Kanno K, Suzuki K, Hangaishi A, Ogawa S, Hirai H, Mitani K: N-ras and p53 gene mutations in Japanese patients with myeloproliferative disorders. Am J Hematol 2002, 71: 131–133. 10.1002/ajh.10188PubMedCrossRef
19.
go back to reference Donehower LA: p53: guardian AND suppressor of longevity? Exp Gerontol 2005, 40: 7–9. 10.1016/j.exger.2004.10.007PubMedCrossRef Donehower LA: p53: guardian AND suppressor of longevity? Exp Gerontol 2005, 40: 7–9. 10.1016/j.exger.2004.10.007PubMedCrossRef
20.
go back to reference Serrano M, Blasco MA: Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 2007, 8: 715–722. 10.1038/nrm2242PubMedCrossRef Serrano M, Blasco MA: Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 2007, 8: 715–722. 10.1038/nrm2242PubMedCrossRef
21.
go back to reference Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA, Serrano M: Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007, 448: 375–379. 10.1038/nature05949PubMedCrossRef Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA, Serrano M: Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007, 448: 375–379. 10.1038/nature05949PubMedCrossRef
22.
go back to reference Nakatake M, Monte-Mor B, Debili N, Casadevall N, Ribrag V, Solary E, Vainchenker W, Plo I: JAK2V617F negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene 2012, 31: 1323–1333. 10.1038/onc.2011.313PubMedCrossRef Nakatake M, Monte-Mor B, Debili N, Casadevall N, Ribrag V, Solary E, Vainchenker W, Plo I: JAK2V617F negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene 2012, 31: 1323–1333. 10.1038/onc.2011.313PubMedCrossRef
23.
go back to reference Li Z, Xu M, Xing S, Ho WT, Ishii T, Li Q, Fu X, Zhao ZJ: Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007, 282: 3428–3432.PubMedCentralPubMedCrossRef Li Z, Xu M, Xing S, Ho WT, Ishii T, Li Q, Fu X, Zhao ZJ: Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007, 282: 3428–3432.PubMedCentralPubMedCrossRef
Metadata
Title
JAK2V617F and p53 mutations coexist in erythroleukemia and megakaryoblastic leukemic cell lines
Authors
Wanke Zhao
Yanhong Du
Wanting Tina Ho
Xueqi Fu
Zhizhuang Joe Zhao
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2012
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/2162-3619-1-15

Other articles of this Issue 1/2012

Experimental Hematology & Oncology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine