Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Research

Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

Authors: Arsalan S Haqqani, Christie E Delaney, Tammy-Lynn Tremblay, Caroline Sodja, Jagdeep K Sandhu, Danica B Stanimirovic

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

Background

In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit.

Methods

To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed.

Results

A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons, as cell-cell communication vesicles. Finally, brain endothelial cell extracellular microvesicles were shown to contain several receptors previously shown to carry macromolecules across the blood brain barrier, including transferrin receptor, insulin receptor, LRPs, LDL and TMEM30A.

Conclusions

The methods described here permit identification of the molecular signatures for brain endothelial cell-specific extracellular microvesicles under various biological conditions. In addition to being a potential source of useful biomarkers, these vesicles contain potentially novel receptors known for delivering molecules across the blood–brain barrier.
Appendix
Available only for authorised users
Literature
1.
go back to reference Begley DJ, Brightman MW: Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003, 61: 39-78.PubMed Begley DJ, Brightman MW: Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003, 61: 39-78.PubMed
2.
go back to reference Pardridge WM, Buciak JL, Friden PM: Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther. 1991, 259: 66-70.PubMed Pardridge WM, Buciak JL, Friden PM: Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther. 1991, 259: 66-70.PubMed
3.
go back to reference Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS: Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011, 3: 84ra44-10.1126/scitranslmed.3002230.PubMed Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS: Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011, 3: 84ra44-10.1126/scitranslmed.3002230.PubMed
4.
go back to reference Coloma MJ, Lee HJ, Kurihara A, Landaw EM, Boado RJ, Morrison SL, Pardridge WM: Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000, 17: 266-274. 10.1023/A:1007592720793.PubMedCrossRef Coloma MJ, Lee HJ, Kurihara A, Landaw EM, Boado RJ, Morrison SL, Pardridge WM: Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000, 17: 266-274. 10.1023/A:1007592720793.PubMedCrossRef
5.
go back to reference Boado RJ, Hui EK, Lu JZ, Zhou QH, Pardridge WM: Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. J Biotechnol. 2010, 146: 84-91. 10.1016/j.jbiotec.2010.01.011.PubMedCentralPubMedCrossRef Boado RJ, Hui EK, Lu JZ, Zhou QH, Pardridge WM: Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. J Biotechnol. 2010, 146: 84-91. 10.1016/j.jbiotec.2010.01.011.PubMedCentralPubMedCrossRef
6.
go back to reference Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP, Beliveau R: Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008, 106: 1534-1544. 10.1111/j.1471-4159.2008.05492.x.PubMedCrossRef Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP, Beliveau R: Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008, 106: 1534-1544. 10.1111/j.1471-4159.2008.05492.x.PubMedCrossRef
7.
go back to reference Gabathuler R: Development of new peptide vectors for the transport of therapeutic across the blood–brain barrier. Ther Deliv. 2010, 1: 571-586. 10.4155/tde.10.35.PubMedCrossRef Gabathuler R: Development of new peptide vectors for the transport of therapeutic across the blood–brain barrier. Ther Deliv. 2010, 1: 571-586. 10.4155/tde.10.35.PubMedCrossRef
8.
go back to reference Ohshima-Hosoyama S, Hosoyama T, Nelon LD, Keller C: IGF-1 receptor inhibition by picropodophyllin in medulloblastoma. Biochem Biophys Res Commun. 2010, 399: 727-732. 10.1016/j.bbrc.2010.08.009.PubMedCrossRef Ohshima-Hosoyama S, Hosoyama T, Nelon LD, Keller C: IGF-1 receptor inhibition by picropodophyllin in medulloblastoma. Biochem Biophys Res Commun. 2010, 399: 727-732. 10.1016/j.bbrc.2010.08.009.PubMedCrossRef
9.
11.
go back to reference Cocucci E, Racchetti G, Meldolesi J: Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009, 19: 43-51. 10.1016/j.tcb.2008.11.003.PubMedCrossRef Cocucci E, Racchetti G, Meldolesi J: Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009, 19: 43-51. 10.1016/j.tcb.2008.11.003.PubMedCrossRef
12.
go back to reference Pant S, Hilton H, Burczynski ME: The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 2012, 83: 1484-1494. 10.1016/j.bcp.2011.12.037.PubMedCrossRef Pant S, Hilton H, Burczynski ME: The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 2012, 83: 1484-1494. 10.1016/j.bcp.2011.12.037.PubMedCrossRef
13.
go back to reference Thery C, Amigorena S, Raposo G, Clayton A: Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006, 3: 22-10.1002/0471143030.cb0322s30.PubMed Thery C, Amigorena S, Raposo G, Clayton A: Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006, 3: 22-10.1002/0471143030.cb0322s30.PubMed
14.
go back to reference Simpson RJ, Jensen SS, Lim JW: Proteomic profiling of exosomes: current perspectives. Proteomics. 2008, 8: 4083-4099. 10.1002/pmic.200800109.PubMedCrossRef Simpson RJ, Jensen SS, Lim JW: Proteomic profiling of exosomes: current perspectives. Proteomics. 2008, 8: 4083-4099. 10.1002/pmic.200800109.PubMedCrossRef
15.
go back to reference Mathivanan S, Fahner CJ, Reid GE, Simpson RJ: ExoCarta 2012: database of exosomal proteins. RNA and lipids. Nucleic Acids Res. 2012, 40: D1241-D1244. 10.1093/nar/gkr828.CrossRef Mathivanan S, Fahner CJ, Reid GE, Simpson RJ: ExoCarta 2012: database of exosomal proteins. RNA and lipids. Nucleic Acids Res. 2012, 40: D1241-D1244. 10.1093/nar/gkr828.CrossRef
16.
go back to reference Smalheiser NR: Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles?. Cardiovasc Psychiatry Neurol. 2009, 2009: 383086-PubMedCentralPubMedCrossRef Smalheiser NR: Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles?. Cardiovasc Psychiatry Neurol. 2009, 2009: 383086-PubMedCentralPubMedCrossRef
17.
go back to reference Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF: The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J. 2008, 37: 323-332. 10.1007/s00249-007-0246-z.PubMedCrossRef Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF: The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J. 2008, 37: 323-332. 10.1007/s00249-007-0246-z.PubMedCrossRef
18.
go back to reference Segura E, Amigorena S, Thery C: Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis. 2005, 35: 89-93. 10.1016/j.bcmd.2005.05.003.PubMedCrossRef Segura E, Amigorena S, Thery C: Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis. 2005, 35: 89-93. 10.1016/j.bcmd.2005.05.003.PubMedCrossRef
19.
go back to reference Liu ML, Williams KJ: Microvesicles: potential markers and mediators of endothelial dysfunction. Curr Opin Endocrinol Diabetes Obes. 2012, 19: 121-127.PubMedCrossRef Liu ML, Williams KJ: Microvesicles: potential markers and mediators of endothelial dysfunction. Curr Opin Endocrinol Diabetes Obes. 2012, 19: 121-127.PubMedCrossRef
20.
go back to reference Virgintino D, Rizzi M, Errede M, Strippoli M, Girolamo F, Bertossi M, Roncali L: Plasma membrane-derived microvesicles released from tip endothelial cells during vascular sprouting. Angiogenesis. 2012, 15: 761-769. 10.1007/s10456-012-9292-y.PubMedCentralPubMedCrossRef Virgintino D, Rizzi M, Errede M, Strippoli M, Girolamo F, Bertossi M, Roncali L: Plasma membrane-derived microvesicles released from tip endothelial cells during vascular sprouting. Angiogenesis. 2012, 15: 761-769. 10.1007/s10456-012-9292-y.PubMedCentralPubMedCrossRef
22.
go back to reference Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R: Emerging role of neuronal exosomes in the central nervous system. Front Physiol. 2012, 3: 145-PubMedCentralPubMedCrossRef Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R: Emerging role of neuronal exosomes in the central nervous system. Front Physiol. 2012, 3: 145-PubMedCentralPubMedCrossRef
23.
go back to reference Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R: Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011, 46: 409-418. 10.1016/j.mcn.2010.11.004.PubMedCrossRef Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R: Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011, 46: 409-418. 10.1016/j.mcn.2010.11.004.PubMedCrossRef
24.
go back to reference Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.PubMed Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.PubMed
25.
go back to reference Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample preparation method for proteome analysis. Nat Methods. 2009, 6: 359-362. 10.1038/nmeth.1322.PubMedCrossRef Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample preparation method for proteome analysis. Nat Methods. 2009, 6: 359-362. 10.1038/nmeth.1322.PubMedCrossRef
26.
go back to reference Hirosawa M, Hoshida M, Ishikawa M, Toya T: MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci. 1993, 9: 161-167.PubMed Hirosawa M, Hoshida M, Ishikawa M, Toya T: MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci. 1993, 9: 161-167.PubMed
27.
go back to reference Haqqani AS, Kelly JF, Stanimirovic DB: Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol Biol. 2008, 439: 241-256. 10.1007/978-1-59745-188-8_17.PubMedCrossRef Haqqani AS, Kelly JF, Stanimirovic DB: Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol Biol. 2008, 439: 241-256. 10.1007/978-1-59745-188-8_17.PubMedCrossRef
28.
go back to reference Haqqani AS, Caram-Salas N, Ding W, Brunette E, Delaney CE, Baumann E, Boileau E, Stanimirovic DB: Multiplexed evaluation of serum and CSF pharmacokinetics of brain-targeting single-domain antibodies using nanoLC-SRM-ILIS method. Mol Pharm. 2012, In Press Haqqani AS, Caram-Salas N, Ding W, Brunette E, Delaney CE, Baumann E, Boileau E, Stanimirovic DB: Multiplexed evaluation of serum and CSF pharmacokinetics of brain-targeting single-domain antibodies using nanoLC-SRM-ILIS method. Mol Pharm. 2012, In Press
29.
go back to reference Haqqani AS, Stanimirovic DB: Intercellular interactomics of human brain endothelial cells and th17 lymphocytes: a novel strategy for identifying therapeutic targets of CNS inflammation. Cardiovasc Psychiatry Neurol. 2011, 2011: 175364-PubMedCentralPubMedCrossRef Haqqani AS, Stanimirovic DB: Intercellular interactomics of human brain endothelial cells and th17 lymphocytes: a novel strategy for identifying therapeutic targets of CNS inflammation. Cardiovasc Psychiatry Neurol. 2011, 2011: 175364-PubMedCentralPubMedCrossRef
30.
go back to reference Yu LR, Conrads TP, Uo T, Kinoshita Y, Morrison RS, Lucas DA, Chan KC, Blonder J, Issaq HJ, Veenstra TD: Global analysis of the cortical neuron proteome. Mol Cell Proteomics. 2004, 3: 896-907. 10.1074/mcp.M400034-MCP200.PubMedCrossRef Yu LR, Conrads TP, Uo T, Kinoshita Y, Morrison RS, Lucas DA, Chan KC, Blonder J, Issaq HJ, Veenstra TD: Global analysis of the cortical neuron proteome. Mol Cell Proteomics. 2004, 3: 896-907. 10.1074/mcp.M400034-MCP200.PubMedCrossRef
31.
go back to reference Abulrob A, Sprong H, Van Bergen en HP, Stanimirovic D: The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005, 95: 1201-1214. 10.1111/j.1471-4159.2005.03463.x.PubMedCrossRef Abulrob A, Sprong H, Van Bergen en HP, Stanimirovic D: The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005, 95: 1201-1214. 10.1111/j.1471-4159.2005.03463.x.PubMedCrossRef
32.
go back to reference Muruganandam A, Tanha J, Narang S, Stanimirovic D: Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J. 2002, 16: 240-242.PubMed Muruganandam A, Tanha J, Narang S, Stanimirovic D: Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J. 2002, 16: 240-242.PubMed
33.
go back to reference Tanha J, Muruganandam A, Stanimirovic D: Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol Med. 2003, 89: 435-449.PubMed Tanha J, Muruganandam A, Stanimirovic D: Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol Med. 2003, 89: 435-449.PubMed
34.
go back to reference Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002, 2: 569-579.PubMed Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002, 2: 569-579.PubMed
35.
go back to reference Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011, 29: 341-345. 10.1038/nbt.1807.PubMedCrossRef Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011, 29: 341-345. 10.1038/nbt.1807.PubMedCrossRef
36.
go back to reference Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG: Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011, 19: 1769-1779. 10.1038/mt.2011.164.PubMedCentralPubMedCrossRef Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG: Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011, 19: 1769-1779. 10.1038/mt.2011.164.PubMedCentralPubMedCrossRef
37.
go back to reference Jones AR, Shusta EV: Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007, 24: 1759-1771. 10.1007/s11095-007-9379-0.PubMedCentralPubMedCrossRef Jones AR, Shusta EV: Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007, 24: 1759-1771. 10.1007/s11095-007-9379-0.PubMedCentralPubMedCrossRef
38.
go back to reference Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R: A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol. 1997, 138: 877-889. 10.1083/jcb.138.4.877.PubMedCentralPubMedCrossRef Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R: A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol. 1997, 138: 877-889. 10.1083/jcb.138.4.877.PubMedCentralPubMedCrossRef
39.
go back to reference Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, Dagenais C, Nguyen T, Lanthier J, Gabathuler R, Kennard M, Jefferies WA, Karkan D, Tsai S, Fenart L, Cecchelli R, Beliveau R: High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J Neurochem. 2002, 83: 924-933. 10.1046/j.1471-4159.2002.01201.x.PubMedCrossRef Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, Dagenais C, Nguyen T, Lanthier J, Gabathuler R, Kennard M, Jefferies WA, Karkan D, Tsai S, Fenart L, Cecchelli R, Beliveau R: High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J Neurochem. 2002, 83: 924-933. 10.1046/j.1471-4159.2002.01201.x.PubMedCrossRef
Metadata
Title
Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells
Authors
Arsalan S Haqqani
Christie E Delaney
Tammy-Lynn Tremblay
Caroline Sodja
Jagdeep K Sandhu
Danica B Stanimirovic
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-4

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue