Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Review

Modeling the blood–brain barrier using stem cell sources

Authors: Ethan S Lippmann, Abraham Al-Ahmad, Sean P Palecek, Eric V Shusta

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

The blood–brain barrier (BBB) is a selective endothelial interface that controls trafficking between the bloodstream and brain interstitial space. During development, the BBB arises as a result of complex multicellular interactions between immature endothelial cells and neural progenitors, neurons, radial glia, and pericytes. As the brain develops, astrocytes and pericytes further contribute to BBB induction and maintenance of the BBB phenotype. Because BBB development, maintenance, and disease states are difficult and time-consuming to study in vivo, researchers often utilize in vitro models for simplified analyses and higher throughput. The in vitro format also provides a platform for screening brain-penetrating therapeutics. However, BBB models derived from adult tissue, especially human sources, have been hampered by limited cell availability and model fidelity. Furthermore, BBB endothelium is very difficult if not impossible to isolate from embryonic animal or human brain, restricting capabilities to model BBB development in vitro. In an effort to address some of these shortcomings, advances in stem cell research have recently been leveraged for improving our understanding of BBB development and function. Stem cells, which are defined by their capacity to expand by self-renewal, can be coaxed to form various somatic cell types and could in principle be very attractive for BBB modeling applications. In this review, we will describe how neural progenitor cells (NPCs), the in vitro precursors to neurons, astrocytes, and oligodendrocytes, can be used to study BBB induction. Next, we will detail how these same NPCs can be differentiated to more mature populations of neurons and astrocytes and profile their use in co-culture modeling of the adult BBB. Finally, we will describe our recent efforts in differentiating human pluripotent stem cells (hPSCs) to endothelial cells with robust BBB characteristics and detail how these cells could ultimately be used to study BBB development and maintenance, to model neurological disease, and to screen neuropharmaceuticals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nakao T, Ishizawa A, Ogawa R: Observations of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces. Anat Rec. 1988, 221: 663-677. 10.1002/ar.1092210212.PubMedCrossRef Nakao T, Ishizawa A, Ogawa R: Observations of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces. Anat Rec. 1988, 221: 663-677. 10.1002/ar.1092210212.PubMedCrossRef
2.
go back to reference Nagase T, Nagase M, Yoshimura K, Fujita T, Koshima I: Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons. Genes Cells. 2005, 10: 595-604. 10.1111/j.1365-2443.2005.00861.x.PubMedCrossRef Nagase T, Nagase M, Yoshimura K, Fujita T, Koshima I: Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons. Genes Cells. 2005, 10: 595-604. 10.1111/j.1365-2443.2005.00861.x.PubMedCrossRef
3.
go back to reference Flamme I, Frolich T, Risau W: Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997, 173: 206-210. 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C.PubMedCrossRef Flamme I, Frolich T, Risau W: Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997, 173: 206-210. 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C.PubMedCrossRef
4.
go back to reference Bader BL, Rayburn H, Crowley D, Hynes RO: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998, 95: 507-519. 10.1016/S0092-8674(00)81618-9.PubMedCrossRef Bader BL, Rayburn H, Crowley D, Hynes RO: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998, 95: 507-519. 10.1016/S0092-8674(00)81618-9.PubMedCrossRef
5.
go back to reference Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, Perris R, Roncali L: An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007, 10: 35-45. 10.1007/s10456-006-9061-x.PubMedCrossRef Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, Perris R, Roncali L: An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007, 10: 35-45. 10.1007/s10456-006-9061-x.PubMedCrossRef
6.
go back to reference Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009, 106: 641-646. 10.1073/pnas.0805165106.PubMedCentralPubMedCrossRef Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009, 106: 641-646. 10.1073/pnas.0805165106.PubMedCentralPubMedCrossRef
7.
go back to reference Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010, 468: 562-566. 10.1038/nature09513.PubMedCentralPubMedCrossRef Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010, 468: 562-566. 10.1038/nature09513.PubMedCentralPubMedCrossRef
8.
go back to reference Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008, 322: 1247-1250. 10.1126/science.1164594.PubMedCrossRef Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008, 322: 1247-1250. 10.1126/science.1164594.PubMedCrossRef
9.
go back to reference Weidenfeller C, Svendsen CN, Shusta EV: Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. J Neurochem. 2007, 101: 555-565. 10.1111/j.1471-4159.2006.04394.x.PubMedCentralPubMedCrossRef Weidenfeller C, Svendsen CN, Shusta EV: Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. J Neurochem. 2007, 101: 555-565. 10.1111/j.1471-4159.2006.04394.x.PubMedCentralPubMedCrossRef
10.
go back to reference Zerlin M, Goldman JE: Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J Comp Neurol. 1997, 387: 537-546. 10.1002/(SICI)1096-9861(19971103)387:4<537::AID-CNE5>3.0.CO;2-3.PubMedCrossRef Zerlin M, Goldman JE: Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J Comp Neurol. 1997, 387: 537-546. 10.1002/(SICI)1096-9861(19971103)387:4<537::AID-CNE5>3.0.CO;2-3.PubMedCrossRef
11.
go back to reference Senjo M, Ishibashi T, Terashima T, Inoue Y: Correlation between astrogliogenesis and blood–brain barrier formation: immunocytochemical demonstration by using astroglia-specific enzyme glutathione S-transferase. Neurosci Lett. 1986, 66: 39-42. 10.1016/0304-3940(86)90162-X.PubMedCrossRef Senjo M, Ishibashi T, Terashima T, Inoue Y: Correlation between astrogliogenesis and blood–brain barrier formation: immunocytochemical demonstration by using astroglia-specific enzyme glutathione S-transferase. Neurosci Lett. 1986, 66: 39-42. 10.1016/0304-3940(86)90162-X.PubMedCrossRef
12.
13.
go back to reference Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M: Wnt/beta-catenin signaling controls development of the blood–brain barrier. J Cell Biol. 2008, 183: 409-417. 10.1083/jcb.200806024.PubMedCentralPubMedCrossRef Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M: Wnt/beta-catenin signaling controls development of the blood–brain barrier. J Cell Biol. 2008, 183: 409-417. 10.1083/jcb.200806024.PubMedCentralPubMedCrossRef
14.
go back to reference Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science. 2011, 334: 1727-1731. 10.1126/science.1206936.PubMedCrossRef Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science. 2011, 334: 1727-1731. 10.1126/science.1206936.PubMedCrossRef
15.
go back to reference Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier. Proc Natl Acad Sci U S A. 2011, 108: 5759-5764. 10.1073/pnas.1017192108.PubMedCentralPubMedCrossRef Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier. Proc Natl Acad Sci U S A. 2011, 108: 5759-5764. 10.1073/pnas.1017192108.PubMedCentralPubMedCrossRef
16.
go back to reference Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci U S A. 2011, 108: 2807-2812. 10.1073/pnas.1019761108.PubMedCentralPubMedCrossRef Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci U S A. 2011, 108: 2807-2812. 10.1073/pnas.1019761108.PubMedCentralPubMedCrossRef
17.
go back to reference Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science. 2010, 330: 985-989. 10.1126/science.1196554.PubMedCentralPubMedCrossRef Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science. 2010, 330: 985-989. 10.1126/science.1196554.PubMedCentralPubMedCrossRef
18.
go back to reference Dejana E, Nyqvist D: News from the brain: the GPR124 orphan receptor directs brain-specific angiogenesis. Sci Transl Med. 2010, 2: 58ps53-10.1126/scitranslmed.3001793.PubMedCrossRef Dejana E, Nyqvist D: News from the brain: the GPR124 orphan receptor directs brain-specific angiogenesis. Sci Transl Med. 2010, 2: 58ps53-10.1126/scitranslmed.3001793.PubMedCrossRef
19.
go back to reference Kniesel U, Risau W, Wolburg H: Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res. 1996, 96: 229-240. 10.1016/0165-3806(96)00117-4.PubMedCrossRef Kniesel U, Risau W, Wolburg H: Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res. 1996, 96: 229-240. 10.1016/0165-3806(96)00117-4.PubMedCrossRef
20.
go back to reference Liebner S, Czupalla CJ, Wolburg H: Current concepts of blood–brain barrier development. Int J Dev Biol. 2011, 55: 467-476. 10.1387/ijdb.103224sl.PubMedCrossRef Liebner S, Czupalla CJ, Wolburg H: Current concepts of blood–brain barrier development. Int J Dev Biol. 2011, 55: 467-476. 10.1387/ijdb.103224sl.PubMedCrossRef
21.
go back to reference Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62.PubMedCentralPubMedCrossRef Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62.PubMedCentralPubMedCrossRef
22.
go back to reference Preston JE, al-Sarraf H, Segal MB: Permeability of the developing blood–brain barrier to 14C-mannitol using the rat in situ brain perfusion technique. Brain Res Dev Brain Res. 1995, 87: 69-76. 10.1016/0165-3806(95)00060-Q.PubMedCrossRef Preston JE, al-Sarraf H, Segal MB: Permeability of the developing blood–brain barrier to 14C-mannitol using the rat in situ brain perfusion technique. Brain Res Dev Brain Res. 1995, 87: 69-76. 10.1016/0165-3806(95)00060-Q.PubMedCrossRef
23.
go back to reference Keep RF, Ennis SR, Beer ME, Betz AL: Developmental changes in blood–brain barrier potassium permeability in the rat: relation to brain growth. J Physiol. 1995, 488 (Pt 2): 439-448.PubMedCentralPubMedCrossRef Keep RF, Ennis SR, Beer ME, Betz AL: Developmental changes in blood–brain barrier potassium permeability in the rat: relation to brain growth. J Physiol. 1995, 488 (Pt 2): 439-448.PubMedCentralPubMedCrossRef
24.
go back to reference Thorne RG, Nicholson C: In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006, 103: 5567-5572. 10.1073/pnas.0509425103.PubMedCentralPubMedCrossRef Thorne RG, Nicholson C: In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006, 103: 5567-5572. 10.1073/pnas.0509425103.PubMedCentralPubMedCrossRef
25.
go back to reference Crone C, Olesen SP: Electrical resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.PubMedCrossRef Crone C, Olesen SP: Electrical resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.PubMedCrossRef
26.
go back to reference Smith QR, Rapoport SI: Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem. 1986, 46: 1732-1742.PubMedCrossRef Smith QR, Rapoport SI: Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem. 1986, 46: 1732-1742.PubMedCrossRef
27.
go back to reference Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell ME, Povlishock JT: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011, 12: 169-182. 10.1038/nrn2995.PubMedCentralPubMedCrossRef Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell ME, Povlishock JT: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011, 12: 169-182. 10.1038/nrn2995.PubMedCentralPubMedCrossRef
28.
go back to reference Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A: Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br J Pharmacol. 2003, 139: 329-336. 10.1038/sj.bjp.0705259.PubMedCentralPubMedCrossRef Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A: Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br J Pharmacol. 2003, 139: 329-336. 10.1038/sj.bjp.0705259.PubMedCentralPubMedCrossRef
29.
go back to reference Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ: F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res. 1997, 768: 10-18. 10.1016/S0006-8993(97)00586-6.PubMedCrossRef Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ: F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res. 1997, 768: 10-18. 10.1016/S0006-8993(97)00586-6.PubMedCrossRef
30.
go back to reference el Hafny B, Bourre JM, Roux F: Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1996, 167: 451-460. 10.1002/(SICI)1097-4652(199606)167:3<451::AID-JCP9>3.0.CO;2-O.PubMedCrossRef el Hafny B, Bourre JM, Roux F: Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1996, 167: 451-460. 10.1002/(SICI)1097-4652(199606)167:3<451::AID-JCP9>3.0.CO;2-O.PubMedCrossRef
31.
go back to reference Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N: Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun. 1999, 261: 108-112. 10.1006/bbrc.1999.0992.PubMedCrossRef Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N: Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun. 1999, 261: 108-112. 10.1006/bbrc.1999.0992.PubMedCrossRef
32.
go back to reference Kim H, Lee JM, Park JS, Jo SA, Kim YO, Kim CW, Jo I: Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem Biophys Res Commun. 2008, 372: 243-248. 10.1016/j.bbrc.2008.05.025.PubMedCrossRef Kim H, Lee JM, Park JS, Jo SA, Kim YO, Kim CW, Jo I: Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem Biophys Res Commun. 2008, 372: 243-248. 10.1016/j.bbrc.2008.05.025.PubMedCrossRef
33.
go back to reference Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV: Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem. 2006, 97: 922-933. 10.1111/j.1471-4159.2006.03793.x.PubMedCrossRef Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV: Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem. 2006, 97: 922-933. 10.1111/j.1471-4159.2006.03793.x.PubMedCrossRef
34.
go back to reference Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat Med. 2003, 9: 900-906. 10.1038/nm889.PubMedCrossRef Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat Med. 2003, 9: 900-906. 10.1038/nm889.PubMedCrossRef
35.
go back to reference Garcia CM, Darland DC, Massingham LJ, D’Amore PA: Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res. 2004, 152: 25-38. 10.1016/j.devbrainres.2004.05.008.PubMedCrossRef Garcia CM, Darland DC, Massingham LJ, D’Amore PA: Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res. 2004, 152: 25-38. 10.1016/j.devbrainres.2004.05.008.PubMedCrossRef
36.
go back to reference Stewart PA, Wiley MJ: Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol. 1981, 84: 183-192. 10.1016/0012-1606(81)90382-1.PubMedCrossRef Stewart PA, Wiley MJ: Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol. 1981, 84: 183-192. 10.1016/0012-1606(81)90382-1.PubMedCrossRef
37.
go back to reference Mi H, Haeberle H, Barres BA: Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001, 21: 1538-1547.PubMed Mi H, Haeberle H, Barres BA: Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001, 21: 1538-1547.PubMed
38.
go back to reference Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, Makrides V, Verrey F: Culture-induced changes in blood–brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab. 2009, 29: 1491-1502. 10.1038/jcbfm.2009.72.PubMedCrossRef Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, Makrides V, Verrey F: Culture-induced changes in blood–brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab. 2009, 29: 1491-1502. 10.1038/jcbfm.2009.72.PubMedCrossRef
39.
go back to reference Roux F, Couraud PO: Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol. 2005, 25: 41-58. 10.1007/s10571-004-1376-9.PubMedCrossRef Roux F, Couraud PO: Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol. 2005, 25: 41-58. 10.1007/s10571-004-1376-9.PubMedCrossRef
40.
go back to reference Kniesel U, Wolburg H: Tight junctions of the blood–brain barrier. Cell Mol Neurobiol. 2000, 20: 57-76. 10.1023/A:1006995910836.PubMedCrossRef Kniesel U, Wolburg H: Tight junctions of the blood–brain barrier. Cell Mol Neurobiol. 2000, 20: 57-76. 10.1023/A:1006995910836.PubMedCrossRef
41.
go back to reference Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.PubMed Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.PubMed
42.
go back to reference Roux F, Durieu-Trautmann O, Chaverot N, Claire M, Mailly P, Bourre JM, Strosberg AD, Couraud PO: Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1994, 159: 101-113. 10.1002/jcp.1041590114.PubMedCrossRef Roux F, Durieu-Trautmann O, Chaverot N, Claire M, Mailly P, Bourre JM, Strosberg AD, Couraud PO: Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1994, 159: 101-113. 10.1002/jcp.1041590114.PubMedCrossRef
43.
go back to reference Montesano R, Pepper MS, Mohle-Steinlein U, Risau W, Wagner EF, Orci L: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell. 1990, 62: 435-445. 10.1016/0092-8674(90)90009-4.PubMedCrossRef Montesano R, Pepper MS, Mohle-Steinlein U, Risau W, Wagner EF, Orci L: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell. 1990, 62: 435-445. 10.1016/0092-8674(90)90009-4.PubMedCrossRef
44.
45.
go back to reference Ogunshola OO: In vitro modeling of the blood–brain barrier: simplicity versus complexity. Curr Pharm Des. 2011, 17: 2755-2761. 10.2174/138161211797440159.PubMedCrossRef Ogunshola OO: In vitro modeling of the blood–brain barrier: simplicity versus complexity. Curr Pharm Des. 2011, 17: 2755-2761. 10.2174/138161211797440159.PubMedCrossRef
46.
go back to reference Arthur FE, Shivers RR, Bowman PD: Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res. 1987, 433: 155-159.PubMedCrossRef Arthur FE, Shivers RR, Bowman PD: Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res. 1987, 433: 155-159.PubMedCrossRef
47.
go back to reference Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.PubMedCrossRef Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.PubMedCrossRef
48.
go back to reference Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J: A cell culture model of the blood–brain barrier. J Cell Biol. 1991, 115: 1725-1735. 10.1083/jcb.115.6.1725.PubMedCrossRef Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J: A cell culture model of the blood–brain barrier. J Cell Biol. 1991, 115: 1725-1735. 10.1083/jcb.115.6.1725.PubMedCrossRef
49.
go back to reference Tao-Cheng JH, Nagy Z, Brightman MW: Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci. 1987, 7: 3293-3299.PubMed Tao-Cheng JH, Nagy Z, Brightman MW: Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci. 1987, 7: 3293-3299.PubMed
50.
go back to reference Janzer RC, Raff MC: Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987, 325: 253-257. 10.1038/325253a0.PubMedCrossRef Janzer RC, Raff MC: Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987, 325: 253-257. 10.1038/325253a0.PubMedCrossRef
51.
go back to reference Dore-Duffy P: Isolation and characterization of cerebral microvascular pericytes. Methods Mol Med. 2003, 89: 375-382.PubMed Dore-Duffy P: Isolation and characterization of cerebral microvascular pericytes. Methods Mol Med. 2003, 89: 375-382.PubMed
52.
go back to reference Schiera G, Sala S, Gallo A, Raffa MP, Pitarresi GL, Savettieri G, Di Liegro I: Permeability properties of a three-cell type in vitro model of blood–brain barrier. J Cell Mol Med. 2005, 9: 373-379. 10.1111/j.1582-4934.2005.tb00362.x.PubMedCrossRef Schiera G, Sala S, Gallo A, Raffa MP, Pitarresi GL, Savettieri G, Di Liegro I: Permeability properties of a three-cell type in vitro model of blood–brain barrier. J Cell Mol Med. 2005, 9: 373-379. 10.1111/j.1582-4934.2005.tb00362.x.PubMedCrossRef
53.
go back to reference Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, Savettieri G: Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003, 7: 165-170. 10.1111/j.1582-4934.2003.tb00215.x.PubMedCrossRef Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, Savettieri G: Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003, 7: 165-170. 10.1111/j.1582-4934.2003.tb00215.x.PubMedCrossRef
54.
go back to reference Cestelli A, Catania C, D’Agostino S, Di Liegro I, Licata L, Schiera G, Pitarresi GL, Savettieri G, De Caro V, Giandalia G, Giannola LI: Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds. J Control Release. 2001, 76: 139-147. 10.1016/S0168-3659(01)00431-X.PubMedCrossRef Cestelli A, Catania C, D’Agostino S, Di Liegro I, Licata L, Schiera G, Pitarresi GL, Savettieri G, De Caro V, Giandalia G, Giannola LI: Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds. J Control Release. 2001, 76: 139-147. 10.1016/S0168-3659(01)00431-X.PubMedCrossRef
55.
go back to reference Savettieri G, Di Liegro I, Catania C, Licata L, Pitarresi GL, D’Agostino S, Schiera G, De Caro V, Giandalia G, Giannola LI, Cestelli A: Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport. 2000, 11: 1081-1084. 10.1097/00001756-200004070-00035.PubMedCrossRef Savettieri G, Di Liegro I, Catania C, Licata L, Pitarresi GL, D’Agostino S, Schiera G, De Caro V, Giandalia G, Giannola LI, Cestelli A: Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport. 2000, 11: 1081-1084. 10.1097/00001756-200004070-00035.PubMedCrossRef
56.
go back to reference Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y: Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005, 1038: 208-215. 10.1016/j.brainres.2005.01.027.PubMedCrossRef Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y: Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005, 1038: 208-215. 10.1016/j.brainres.2005.01.027.PubMedCrossRef
57.
go back to reference Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T: A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004, 89: 503-513. 10.1111/j.1471-4159.2004.02343.x.PubMedCrossRef Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T: A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004, 89: 503-513. 10.1111/j.1471-4159.2004.02343.x.PubMedCrossRef
58.
go back to reference Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.PubMedCentralPubMedCrossRef Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.PubMedCentralPubMedCrossRef
59.
go back to reference Fenart L, Buee-Scherrer V, Descamps L, Duhem C, Poullain MG, Cecchelli R, Dehouck MP: Inhibition of P-glycoprotein: rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm Res. 1998, 15: 993-1000. 10.1023/A:1011913723928.PubMedCrossRef Fenart L, Buee-Scherrer V, Descamps L, Duhem C, Poullain MG, Cecchelli R, Dehouck MP: Inhibition of P-glycoprotein: rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm Res. 1998, 15: 993-1000. 10.1023/A:1011913723928.PubMedCrossRef
60.
go back to reference Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009, 54: 253-263. 10.1016/j.neuint.2008.12.002.PubMedCrossRef Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009, 54: 253-263. 10.1016/j.neuint.2008.12.002.PubMedCrossRef
61.
go back to reference Al Ahmad A, Gassmann M, Ogunshola OO: Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol. 2009, 218: 612-622. 10.1002/jcp.21638.PubMedCrossRef Al Ahmad A, Gassmann M, Ogunshola OO: Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol. 2009, 218: 612-622. 10.1002/jcp.21638.PubMedCrossRef
62.
go back to reference Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.PubMedCentralPubMedCrossRef Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.PubMedCentralPubMedCrossRef
63.
go back to reference Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D: Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia. 2007, 48: 505-516. 10.1111/j.1528-1167.2006.00960.x.PubMedCrossRef Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D: Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia. 2007, 48: 505-516. 10.1111/j.1528-1167.2006.00960.x.PubMedCrossRef
64.
go back to reference Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D: The role of shear stress in Blood–brain Barrier endothelial physiology. BMC Neurosci. 2011, 12: 40-10.1186/1471-2202-12-40.PubMedCentralPubMedCrossRef Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D: The role of shear stress in Blood–brain Barrier endothelial physiology. BMC Neurosci. 2011, 12: 40-10.1186/1471-2202-12-40.PubMedCentralPubMedCrossRef
65.
go back to reference Li Q, Ford MC, Lavik EB, Madri JA: Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res. 2006, 84: 1656-1668. 10.1002/jnr.21087.PubMedCrossRef Li Q, Ford MC, Lavik EB, Madri JA: Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res. 2006, 84: 1656-1668. 10.1002/jnr.21087.PubMedCrossRef
66.
go back to reference Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV: Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011, 119: 507-520. 10.1111/j.1471-4159.2011.07434.x.PubMedCentralPubMedCrossRef Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV: Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011, 119: 507-520. 10.1111/j.1471-4159.2011.07434.x.PubMedCentralPubMedCrossRef
67.
go back to reference Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000, 6: 271-277. 10.1038/73119.PubMedCrossRef Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000, 6: 271-277. 10.1038/73119.PubMedCrossRef
68.
go back to reference Luskin MB: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993, 11: 173-189. 10.1016/0896-6273(93)90281-U.PubMedCrossRef Luskin MB: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993, 11: 173-189. 10.1016/0896-6273(93)90281-U.PubMedCrossRef
69.
go back to reference Lois C, Alvarez-Buylla A: Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993, 90: 2074-2077. 10.1073/pnas.90.5.2074.PubMedCentralPubMedCrossRef Lois C, Alvarez-Buylla A: Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993, 90: 2074-2077. 10.1073/pnas.90.5.2074.PubMedCentralPubMedCrossRef
70.
go back to reference Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996, 273: 242-245. 10.1126/science.273.5272.242.PubMedCrossRef Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996, 273: 242-245. 10.1126/science.273.5272.242.PubMedCrossRef
71.
go back to reference Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981, 292: 154-156. 10.1038/292154a0.PubMedCrossRef Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981, 292: 154-156. 10.1038/292154a0.PubMedCrossRef
72.
go back to reference Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981, 78: 7634-7638. 10.1073/pnas.78.12.7634.PubMedCentralPubMedCrossRef Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981, 78: 7634-7638. 10.1073/pnas.78.12.7634.PubMedCentralPubMedCrossRef
73.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282: 1145-1147.PubMedCrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282: 1145-1147.PubMedCrossRef
74.
go back to reference Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN: Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol. 2001, 19: 475-479. 10.1038/88158.PubMedCrossRef Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN: Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol. 2001, 19: 475-479. 10.1038/88158.PubMedCrossRef
75.
go back to reference Temple S: Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989, 340: 471-473. 10.1038/340471a0.PubMedCrossRef Temple S: Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989, 340: 471-473. 10.1038/340471a0.PubMedCrossRef
76.
go back to reference Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676. 10.1016/j.cell.2006.07.024.PubMedCrossRef Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676. 10.1016/j.cell.2006.07.024.PubMedCrossRef
77.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131: 861-872. 10.1016/j.cell.2007.11.019.PubMedCrossRef Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131: 861-872. 10.1016/j.cell.2007.11.019.PubMedCrossRef
78.
go back to reference Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920. 10.1126/science.1151526.PubMedCrossRef Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920. 10.1126/science.1151526.PubMedCrossRef
79.
go back to reference Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y: Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012, 11: 100-109. 10.1016/j.stem.2012.05.018.PubMedCentralPubMedCrossRef Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y: Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012, 11: 100-109. 10.1016/j.stem.2012.05.018.PubMedCentralPubMedCrossRef
80.
go back to reference Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S: Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012, 10: 465-472. 10.1016/j.stem.2012.02.021.PubMedCrossRef Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S: Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012, 10: 465-472. 10.1016/j.stem.2012.02.021.PubMedCrossRef
81.
go back to reference Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S: Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011, 108: 7838-7843. 10.1073/pnas.1103113108.PubMedCentralPubMedCrossRef Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S: Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011, 108: 7838-7843. 10.1073/pnas.1103113108.PubMedCentralPubMedCrossRef
82.
go back to reference Hazeltine LB, Simmons CS, Salick MR, Lian X, Badur MG, Han W, Delgado SM, Wakatsuki T, Crone WC, Pruitt BL, Palecek SP: Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol. 2012, 2012: 508294-PubMedCentralPubMedCrossRef Hazeltine LB, Simmons CS, Salick MR, Lian X, Badur MG, Han W, Delgado SM, Wakatsuki T, Crone WC, Pruitt BL, Palecek SP: Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol. 2012, 2012: 508294-PubMedCentralPubMedCrossRef
83.
go back to reference Borowiak M: The new generation of beta-cells: replication, stem cell differentiation, and the role of small molecules. Rev Diabet Stud. 2010, 7: 93-104. 10.1900/RDS.2010.7.93.PubMedCentralPubMedCrossRef Borowiak M: The new generation of beta-cells: replication, stem cell differentiation, and the role of small molecules. Rev Diabet Stud. 2010, 7: 93-104. 10.1900/RDS.2010.7.93.PubMedCentralPubMedCrossRef
84.
go back to reference Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G, Comi GP, Corti S: Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci. 2010, 67: 3837-3847. 10.1007/s00018-010-0463-y.PubMedCrossRef Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G, Comi GP, Corti S: Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci. 2010, 67: 3837-3847. 10.1007/s00018-010-0463-y.PubMedCrossRef
85.
go back to reference Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM: Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009, 106: 16698-16703. 10.1073/pnas.0905245106.PubMedCentralPubMedCrossRef Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM: Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009, 106: 16698-16703. 10.1073/pnas.0905245106.PubMedCentralPubMedCrossRef
86.
go back to reference Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y: Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012, 10: 771-785. 10.1016/j.stem.2012.05.009.PubMedCrossRef Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y: Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012, 10: 771-785. 10.1016/j.stem.2012.05.009.PubMedCrossRef
87.
go back to reference Metallo CM, Mohr JC, Detzel CJ, de Pablo JJ, Van Wie BJ, Palecek SP: Engineering the stem cell microenvironment. Biotechnol Prog. 2007, 23: 18-23. 10.1021/bp060350a.PubMedCrossRef Metallo CM, Mohr JC, Detzel CJ, de Pablo JJ, Van Wie BJ, Palecek SP: Engineering the stem cell microenvironment. Biotechnol Prog. 2007, 23: 18-23. 10.1021/bp060350a.PubMedCrossRef
88.
go back to reference Grskovic M, Javaherian A, Strulovici B, Daley GQ: Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011, 10: 915-929.PubMed Grskovic M, Javaherian A, Strulovici B, Daley GQ: Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011, 10: 915-929.PubMed
89.
go back to reference Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009, 457: 277-280. 10.1038/nature07677.PubMedCentralPubMedCrossRef Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009, 457: 277-280. 10.1038/nature07677.PubMedCentralPubMedCrossRef
90.
go back to reference Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482: 216-220.PubMedCentralPubMed Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482: 216-220.PubMedCentralPubMed
91.
go back to reference Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009, 461: 402-406. 10.1038/nature08320.PubMedCentralPubMedCrossRef Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009, 461: 402-406. 10.1038/nature08320.PubMedCentralPubMedCrossRef
92.
go back to reference Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010, 143: 527-539. 10.1016/j.cell.2010.10.016.PubMedCentralPubMedCrossRef Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010, 143: 527-539. 10.1016/j.cell.2010.10.016.PubMedCentralPubMedCrossRef
93.
go back to reference Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3: 711-715. 10.1038/nrd1470.PubMedCrossRef Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3: 711-715. 10.1038/nrd1470.PubMedCrossRef
94.
go back to reference Guo L, Abrams RM, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ, Chiao E, Kolaja KL: Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2011, 123: 281-289. 10.1093/toxsci/kfr158.PubMedCrossRef Guo L, Abrams RM, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ, Chiao E, Kolaja KL: Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2011, 123: 281-289. 10.1093/toxsci/kfr158.PubMedCrossRef
95.
go back to reference Cohen JD, Babiarz JE, Abrams RM, Guo L, Kameoka S, Chiao E, Taunton J, Kolaja KL: Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicol Appl Pharmacol. 2011, 257: 74-83. 10.1016/j.taap.2011.08.020.PubMedCrossRef Cohen JD, Babiarz JE, Abrams RM, Guo L, Kameoka S, Chiao E, Taunton J, Kolaja KL: Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicol Appl Pharmacol. 2011, 257: 74-83. 10.1016/j.taap.2011.08.020.PubMedCrossRef
96.
go back to reference Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV: Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012, 30: 783-791. 10.1038/nbt.2247.PubMedCentralPubMedCrossRef Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV: Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012, 30: 783-791. 10.1038/nbt.2247.PubMedCentralPubMedCrossRef
97.
go back to reference Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004, 304: 1338-1340. 10.1126/science.1095505.PubMedCrossRef Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004, 304: 1338-1340. 10.1126/science.1095505.PubMedCrossRef
98.
go back to reference Lim JC, Wolpaw AJ, Caldwell MA, Hladky SB, Barrand MA: Neural precursor cell influences on blood–brain barrier characteristics in rat brain endothelial cells. Brain Res. 2007, 1159: 67-76.PubMedCrossRef Lim JC, Wolpaw AJ, Caldwell MA, Hladky SB, Barrand MA: Neural precursor cell influences on blood–brain barrier characteristics in rat brain endothelial cells. Brain Res. 2007, 1159: 67-76.PubMedCrossRef
99.
go back to reference Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R: Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002, 99: 4391-4396. 10.1073/pnas.032074999.PubMedCentralPubMedCrossRef Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R: Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002, 99: 4391-4396. 10.1073/pnas.032074999.PubMedCentralPubMedCrossRef
100.
go back to reference James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M, Studer L, Lee G, Lyden D, Benezra R: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol. 2010, 28: 161-166. 10.1038/nbt.1605.PubMedCentralPubMedCrossRef James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M, Studer L, Lee G, Lyden D, Benezra R: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol. 2010, 28: 161-166. 10.1038/nbt.1605.PubMedCentralPubMedCrossRef
101.
go back to reference Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I: Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009, 27: 559-567.PubMedCentralPubMedCrossRef Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I: Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009, 27: 559-567.PubMedCentralPubMedCrossRef
102.
go back to reference Merkle FT, Mirzadeh Z, Alvarez-Buylla A: Mosaic organization of neural stem cells in the adult brain. Science. 2007, 317: 381-384. 10.1126/science.1144914.PubMedCrossRef Merkle FT, Mirzadeh Z, Alvarez-Buylla A: Mosaic organization of neural stem cells in the adult brain. Science. 2007, 317: 381-384. 10.1126/science.1144914.PubMedCrossRef
103.
go back to reference Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ: Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell. 2008, 133: 510-522. 10.1016/j.cell.2008.02.046.PubMedCentralPubMedCrossRef Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ: Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell. 2008, 133: 510-522. 10.1016/j.cell.2008.02.046.PubMedCentralPubMedCrossRef
104.
go back to reference Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SP, Merkle F: Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012, 337: 358-362. 10.1126/science.1222381.PubMedCentralPubMedCrossRef Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SP, Merkle F: Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012, 337: 358-362. 10.1126/science.1222381.PubMedCentralPubMedCrossRef
105.
go back to reference Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci. 2008, 11: 429-439. 10.1038/nn2074.PubMedCentralPubMedCrossRef Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci. 2008, 11: 429-439. 10.1038/nn2074.PubMedCentralPubMedCrossRef
106.
go back to reference Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM: Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab. 2012, 32: 81-92. 10.1038/jcbfm.2011.109.PubMedCentralPubMedCrossRef Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM: Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab. 2012, 32: 81-92. 10.1038/jcbfm.2011.109.PubMedCentralPubMedCrossRef
107.
go back to reference Sergent-Tanguy S, Michel DC, Neveu I, Naveilhan P: Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(−) cells in cell proliferation. J Neurosci Res. 2006, 83: 1515-1524. 10.1002/jnr.20846.PubMedCrossRef Sergent-Tanguy S, Michel DC, Neveu I, Naveilhan P: Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(−) cells in cell proliferation. J Neurosci Res. 2006, 83: 1515-1524. 10.1002/jnr.20846.PubMedCrossRef
108.
go back to reference Yang H, Qian XH, Cong R, Li JW, Yao Q, Jiao XY, Ju G, You SW: Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes. Cell Mol Neurobiol. 2010, 30: 483-491. 10.1007/s10571-009-9474-3.PubMedCrossRef Yang H, Qian XH, Cong R, Li JW, Yao Q, Jiao XY, Ju G, You SW: Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes. Cell Mol Neurobiol. 2010, 30: 483-491. 10.1007/s10571-009-9474-3.PubMedCrossRef
109.
go back to reference Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.PubMedCrossRef Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.PubMedCrossRef
110.
go back to reference Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN: Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem. 2003, 86: 179-195.PubMedCrossRef Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN: Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem. 2003, 86: 179-195.PubMedCrossRef
111.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K: Pericytes regulate the blood–brain barrier. Nature. 2010, 468: 557-561. 10.1038/nature09522.PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K: Pericytes regulate the blood–brain barrier. Nature. 2010, 468: 557-561. 10.1038/nature09522.PubMedCrossRef
112.
go back to reference Calabria AR, Shusta EV: A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab. 2008, 28: 135-148. 10.1038/sj.jcbfm.9600518.PubMedCentralPubMedCrossRef Calabria AR, Shusta EV: A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab. 2008, 28: 135-148. 10.1038/sj.jcbfm.9600518.PubMedCentralPubMedCrossRef
113.
go back to reference Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT: ABC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood–brain barrier cell line. Mol Pharm. 2010, 7: 1057-1068. 10.1021/mp900178j.PubMedCentralPubMedCrossRef Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT: ABC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood–brain barrier cell line. Mol Pharm. 2010, 7: 1057-1068. 10.1021/mp900178j.PubMedCentralPubMedCrossRef
114.
go back to reference Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Decleves X: Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol. 2009, 77: 897-909. 10.1016/j.bcp.2008.11.001.PubMedCrossRef Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Decleves X: Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol. 2009, 77: 897-909. 10.1016/j.bcp.2008.11.001.PubMedCrossRef
115.
go back to reference Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.PubMedCrossRef Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.PubMedCrossRef
116.
go back to reference Krencik R, Zhang SC: Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011, 6: 1710-1717. 10.1038/nprot.2011.405.PubMedCentralPubMedCrossRef Krencik R, Zhang SC: Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011, 6: 1710-1717. 10.1038/nprot.2011.405.PubMedCentralPubMedCrossRef
117.
go back to reference Krencik R, Weick JP, Liu Y, Zhang ZJ, Zhang SC: Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011, 29: 528-534. 10.1038/nbt.1877.PubMedCentralPubMedCrossRef Krencik R, Weick JP, Liu Y, Zhang ZJ, Zhang SC: Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011, 29: 528-534. 10.1038/nbt.1877.PubMedCentralPubMedCrossRef
118.
go back to reference Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008, 3: 279-288. 10.1016/j.stem.2008.07.025.PubMedCrossRef Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008, 3: 279-288. 10.1016/j.stem.2008.07.025.PubMedCrossRef
119.
go back to reference Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001, 19: 1129-1133. 10.1038/nbt1201-1129.PubMedCrossRef Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001, 19: 1129-1133. 10.1038/nbt1201-1129.PubMedCrossRef
120.
go back to reference Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J: Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012, 125: 87-99. 10.1161/CIRCULATIONAHA.111.048264.PubMedCrossRef Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J: Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012, 125: 87-99. 10.1161/CIRCULATIONAHA.111.048264.PubMedCrossRef
121.
go back to reference Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW: Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010, 121: 1113-1123. 10.1161/CIRCULATIONAHA.109.898312.PubMedCrossRef Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW: Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010, 121: 1113-1123. 10.1161/CIRCULATIONAHA.109.898312.PubMedCrossRef
122.
go back to reference Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J: Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012, 485: 512-516.PubMedCentralPubMedCrossRef Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J: Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012, 485: 512-516.PubMedCentralPubMedCrossRef
123.
go back to reference Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck MP, Berezowski V, Fenart L, Cecchelli R: An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 2008, 22: 799-811. 10.1016/j.tiv.2007.12.016.PubMedCrossRef Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck MP, Berezowski V, Fenart L, Cecchelli R: An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 2008, 22: 799-811. 10.1016/j.tiv.2007.12.016.PubMedCrossRef
124.
go back to reference Patabendige A, Skinner RA, Abbott NJ: Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. in press Patabendige A, Skinner RA, Abbott NJ: Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. in press
125.
go back to reference Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.PubMedCrossRef Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.PubMedCrossRef
126.
go back to reference Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, Romero IA: Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res. 2009, 1292: 14-24.PubMedCrossRef Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, Romero IA: Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res. 2009, 1292: 14-24.PubMedCrossRef
127.
go back to reference Wang Q, Yang H, Miller DW, Elmquist WF: Effect of the p-glycoprotein inhibitor, cyclosporin A, on the distribution of rhodamine-123 to the brain: an in vivo microdialysis study in freely moving rats. Biochem Biophys Res Commun. 1995, 211: 719-726. 10.1006/bbrc.1995.1872.PubMedCrossRef Wang Q, Yang H, Miller DW, Elmquist WF: Effect of the p-glycoprotein inhibitor, cyclosporin A, on the distribution of rhodamine-123 to the brain: an in vivo microdialysis study in freely moving rats. Biochem Biophys Res Commun. 1995, 211: 719-726. 10.1006/bbrc.1995.1872.PubMedCrossRef
128.
go back to reference Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N: Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood–brain barrier. Endocrinology. 2008, 149: 6251-6261. 10.1210/en.2008-0378.PubMedCrossRef Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N: Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood–brain barrier. Endocrinology. 2008, 149: 6251-6261. 10.1210/en.2008-0378.PubMedCrossRef
129.
go back to reference Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.PubMedCrossRef Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.PubMedCrossRef
130.
go back to reference Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA: Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008, 26: 313-315. 10.1038/nbt1383.PubMedCrossRef Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA: Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008, 26: 313-315. 10.1038/nbt1383.PubMedCrossRef
131.
go back to reference Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010, 107: 4335-4340. 10.1073/pnas.0910012107.PubMedCentralPubMedCrossRef Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010, 107: 4335-4340. 10.1073/pnas.0910012107.PubMedCentralPubMedCrossRef
132.
go back to reference Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010, 28: 848-855. 10.1038/nbt.1667.PubMedCentralPubMedCrossRef Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010, 28: 848-855. 10.1038/nbt.1667.PubMedCentralPubMedCrossRef
133.
go back to reference Bar-Nur O, Russ HA, Efrat S, Benvenisty N: Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011, 9: 17-23. 10.1016/j.stem.2011.06.007.PubMedCrossRef Bar-Nur O, Russ HA, Efrat S, Benvenisty N: Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011, 9: 17-23. 10.1016/j.stem.2011.06.007.PubMedCrossRef
134.
go back to reference Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI: Epigenetic memory in induced pluripotent stem cells. Nature. 2010, 467: 285-290. 10.1038/nature09342.PubMedCentralPubMedCrossRef Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI: Epigenetic memory in induced pluripotent stem cells. Nature. 2010, 467: 285-290. 10.1038/nature09342.PubMedCentralPubMedCrossRef
135.
go back to reference Shao K, Koch C, Gupta MK, Lin Q, Lenz M, Laufs S, Denecke B, Schmidt M, Linke M, Hennies HC: Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Mol Ther. in press Shao K, Koch C, Gupta MK, Lin Q, Lenz M, Laufs S, Denecke B, Schmidt M, Linke M, Hennies HC: Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Mol Ther. in press
136.
go back to reference Booth R, Kim H: Characterization of a microfluidic in vitro model of the blood–brain barrier (muBBB). Lab Chip. 2012, 12: 1784-1792. 10.1039/c2lc40094d.PubMedCrossRef Booth R, Kim H: Characterization of a microfluidic in vitro model of the blood–brain barrier (muBBB). Lab Chip. 2012, 12: 1784-1792. 10.1039/c2lc40094d.PubMedCrossRef
137.
go back to reference Howden SE, Gore A, Li Z, Fung HL, Nisler BS, Nie J, Chen G, McIntosh BE, Gulbranson DR, Diol NR: Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci U S A. 2011, 108: 6537-6542. 10.1073/pnas.1103388108.PubMedCentralPubMedCrossRef Howden SE, Gore A, Li Z, Fung HL, Nisler BS, Nie J, Chen G, McIntosh BE, Gulbranson DR, Diol NR: Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci U S A. 2011, 108: 6537-6542. 10.1073/pnas.1103388108.PubMedCentralPubMedCrossRef
138.
go back to reference Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009, 27: 851-857. 10.1038/nbt.1562.PubMedCentralPubMedCrossRef Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009, 27: 851-857. 10.1038/nbt.1562.PubMedCentralPubMedCrossRef
139.
go back to reference Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC: Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011, 29: 731-734. 10.1038/nbt.1927.PubMedCentralPubMedCrossRef Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC: Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011, 29: 731-734. 10.1038/nbt.1927.PubMedCentralPubMedCrossRef
140.
go back to reference Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE: Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011, 8: 424-429. 10.1038/nmeth.1593.PubMedCentralPubMedCrossRef Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE: Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011, 8: 424-429. 10.1038/nmeth.1593.PubMedCentralPubMedCrossRef
Metadata
Title
Modeling the blood–brain barrier using stem cell sources
Authors
Ethan S Lippmann
Abraham Al-Ahmad
Sean P Palecek
Eric V Shusta
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-2

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue