Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2014

Open Access 01-12-2014 | Research

Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome

Authors: Adriana Ferreira Grosso, Sérgio Ferreira de Oliveira, Maria de Lourdes Higuchi, Desidério Favarato, Luís Alberto de Oliveira Dallan, Protásio Lemos da Luz

Published in: Diabetology & Metabolic Syndrome | Issue 1/2014

Login to get access

Abstract

Background

The inappropriate secretion of adipocytokines plays a critical role in chronic inflammatory states associated with obesity-linked type 2 diabetes and atherosclerosis. The pleiotropic actions of simvastatin and pioglitazone on epicardial adipose tissue (EAT) are unknown. This study assessed the anti-inflammatory actions of simvastatin and pioglitazone on EAT in patients with coronary artery disease (CAD) and metabolic syndrome (MS).

Methods

A total of 73 patients with multivessel CAD who underwent elective bypass grafting were non-randomly allocated to one of four subgroups: Control (n = 17), simvastatin (20 mg/day, n = 20), pioglitazone (15 mg or 30 mg/day, n = 18), or simvastatin + pioglitazone (20 mg/day + 30 mg/day, respectively, n = 18); 20 valvar patients were also included. EAT samples were obtained during surgery. The infiltration of macrophages and lymphocytes and cytokines secretion were investigated using immunohistochemical staining and compared to plasma inflammatory biomarkers.

Results

Simvastatin significantly reduced plasma interleukin-6, leptin, resistin and monocyte chemoattractant protein-1 (p < 0.001 for all); pioglitazone reduced interleukin-6, tumoral necrose factor-alpha, resistin and matrix metalloproteinase-9 (p < 0.001 for all). Simvastatin + pioglitazone treatment further reduced plasmatic variables, including interleukin-6, tumoral necrose factor-alpha, resistin, asymmetric dimethylarginine and metalloproteinase-9 vs. the control group (p < 0.001). Higher plasma adiponectin and lower high sensitivity C-reactive protein concentrations were found simultaneously in the combined treatment group. A positive correlation between the mean percentage systemic and tissue cytokines was observed after treatments. T- and B-lymphocytes and macrophages clusters were observed in the fat fragments of patients treated with simvastatin for the first time.

Conclusions

Pioglitazone, simvastatin or combination treatment substantially reduced EAT and plasma inflammatory markers in CAD and MS patients. These tissue effects may contribute to the control of coronary atherosclerosis progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kershaw EE, Flier JS: Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004, 89: 2548-2556.CrossRefPubMed Kershaw EE, Flier JS: Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004, 89: 2548-2556.CrossRefPubMed
2.
go back to reference Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT: Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000, 102: 2180-2184.CrossRefPubMed Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT: Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000, 102: 2180-2184.CrossRefPubMed
4.
go back to reference Haffner SM: The metabolic syndrome: inflammation, diabetes mellitus and cardiovascular disease. J Am Coll Cardiol. 2006, 97: 3A-11A.CrossRef Haffner SM: The metabolic syndrome: inflammation, diabetes mellitus and cardiovascular disease. J Am Coll Cardiol. 2006, 97: 3A-11A.CrossRef
5.
go back to reference Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y: Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003, 108: 2460-2466.CrossRefPubMed Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y: Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003, 108: 2460-2466.CrossRefPubMed
6.
go back to reference Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, Kumar S, McTernan PG: Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006, 5: 1-7.PubMedCentralCrossRefPubMed Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, Kumar S, McTernan PG: Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006, 5: 1-7.PubMedCentralCrossRefPubMed
7.
go back to reference Permana PA, Menge C, Reaven PD: Macrophage-secreted factors induce adipocyte inflammation and insulin resistence. Biochem Biophys Res Commun. 2006, 341: 507-514.CrossRefPubMed Permana PA, Menge C, Reaven PD: Macrophage-secreted factors induce adipocyte inflammation and insulin resistence. Biochem Biophys Res Commun. 2006, 341: 507-514.CrossRefPubMed
8.
go back to reference Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, Nishio C, Higashida M, Nakaya Y, Kitagawa T, Sata M: Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011, 52: 139-142.CrossRefPubMed Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, Nishio C, Higashida M, Nakaya Y, Kitagawa T, Sata M: Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011, 52: 139-142.CrossRefPubMed
9.
go back to reference Hug C, Lodish HF: The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr Opin Pharmacol. 2005, 5: 129-134.CrossRefPubMed Hug C, Lodish HF: The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr Opin Pharmacol. 2005, 5: 129-134.CrossRefPubMed
10.
go back to reference Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, Gallo P, di Gioia CR: Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005, 29: 251-255.PubMed Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, Gallo P, di Gioia CR: Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005, 29: 251-255.PubMed
11.
go back to reference Zhou A, Murillo H, Peng Q: Impact of partial volume effects on visceral adipose tissue quantification using MRI. J Magn Reson Imaging. 2011, 34: 1452-1457.CrossRefPubMed Zhou A, Murillo H, Peng Q: Impact of partial volume effects on visceral adipose tissue quantification using MRI. J Magn Reson Imaging. 2011, 34: 1452-1457.CrossRefPubMed
12.
go back to reference Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG: Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord. 2004, 28: S58-S65.CrossRefPubMed Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG: Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord. 2004, 28: S58-S65.CrossRefPubMed
13.
go back to reference Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F: Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003, 11: 304-310.CrossRefPubMed Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F: Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003, 11: 304-310.CrossRefPubMed
14.
go back to reference Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, Di Mario U, Leonetti F: Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003, 88: 5163-5168.CrossRefPubMed Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, Di Mario U, Leonetti F: Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003, 88: 5163-5168.CrossRefPubMed
15.
go back to reference Luz PL, Nishiyama M, Chagas AC: Drugs and lifestyle for the treatmen and prevention of coronary artery disease – comparative analysis of the scientific basis. Braz J Med Biol Res. 2011, 44: 973-991.CrossRefPubMed Luz PL, Nishiyama M, Chagas AC: Drugs and lifestyle for the treatmen and prevention of coronary artery disease – comparative analysis of the scientific basis. Braz J Med Biol Res. 2011, 44: 973-991.CrossRefPubMed
16.
go back to reference Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino LJ, DeFronzo RA: Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2004, 89: 4312-4319.CrossRefPubMed Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino LJ, DeFronzo RA: Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2004, 89: 4312-4319.CrossRefPubMed
17.
go back to reference Khan M, Murray FT, Karunaratne M, Perez A: Pioglitazone and reductions in post-challenge glucose levels in patients with type 2 diabetes. Diabetes Obes Metab. 2006, 8: 31-38.CrossRefPubMed Khan M, Murray FT, Karunaratne M, Perez A: Pioglitazone and reductions in post-challenge glucose levels in patients with type 2 diabetes. Diabetes Obes Metab. 2006, 8: 31-38.CrossRefPubMed
18.
go back to reference Permana PA, Zhang W, Wabitsch M, Fischer-Posovszky P, Duckworth WC, Reaven PD: Pioglitazone reduces inflammatory responses of human adipocytes to factors secreted by monocytes/macrophages. Am J Physiol Endocrinol Metab. 2009, 296: E1076-E1084.CrossRefPubMed Permana PA, Zhang W, Wabitsch M, Fischer-Posovszky P, Duckworth WC, Reaven PD: Pioglitazone reduces inflammatory responses of human adipocytes to factors secreted by monocytes/macrophages. Am J Physiol Endocrinol Metab. 2009, 296: E1076-E1084.CrossRefPubMed
19.
go back to reference Grundy SM, Cleeman JI, Merz CN, Brewer HB, Clark LT, Hunninghake DB, Pasternak RC, Smith SC, Stone NJ, National Heart, Lung, and Blood Institute; American College of Cardiology Foundation; American Heart Association: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004, 110: 227-239.CrossRefPubMed Grundy SM, Cleeman JI, Merz CN, Brewer HB, Clark LT, Hunninghake DB, Pasternak RC, Smith SC, Stone NJ, National Heart, Lung, and Blood Institute; American College of Cardiology Foundation; American Heart Association: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004, 110: 227-239.CrossRefPubMed
20.
go back to reference Hanley AJ, Karter AJ, Williams K, Festa A, D’Agostino RB, Wagenknecht LE, Haffner SM: Prediction of type 2 diabetes mellitus with alternative definitions of the metabolic syndrome: the insulin resistance atherosclerosis study. Circulation. 2005, 112: 3713-3721.CrossRefPubMed Hanley AJ, Karter AJ, Williams K, Festa A, D’Agostino RB, Wagenknecht LE, Haffner SM: Prediction of type 2 diabetes mellitus with alternative definitions of the metabolic syndrome: the insulin resistance atherosclerosis study. Circulation. 2005, 112: 3713-3721.CrossRefPubMed
21.
go back to reference Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S: Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation. 2001, 103: 1933-1935.CrossRefPubMed Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S: Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation. 2001, 103: 1933-1935.CrossRefPubMed
22.
go back to reference Hanefeld M, Marx N, Pfützner A, Baurecht W, Lübben G, Karagiannis E, Stier U, Forst T: Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity c-reactive protein: the PIOSTAT study. J Am Coll Cardiol. 2007, 49: 290-297.CrossRefPubMed Hanefeld M, Marx N, Pfützner A, Baurecht W, Lübben G, Karagiannis E, Stier U, Forst T: Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity c-reactive protein: the PIOSTAT study. J Am Coll Cardiol. 2007, 49: 290-297.CrossRefPubMed
23.
go back to reference Forst T, Karagiannis E, Lübben G, Hohberg C, Schöndorf T, Dikta G, Drexler M, Morcos M, Dänschel W, Borchert M, Pfützner A: Pleiotrophic and anti-inflammatory effects of pioglitazone precede the metabolic activity in type 2 diabetic patients with coronary artery disease. Atherosclerosis. 2008, 197: 311-317.CrossRefPubMed Forst T, Karagiannis E, Lübben G, Hohberg C, Schöndorf T, Dikta G, Drexler M, Morcos M, Dänschel W, Borchert M, Pfützner A: Pleiotrophic and anti-inflammatory effects of pioglitazone precede the metabolic activity in type 2 diabetic patients with coronary artery disease. Atherosclerosis. 2008, 197: 311-317.CrossRefPubMed
24.
go back to reference Pfützner A, Marx N, Lübben G, Langenfeld M, Walcher D, Konrad T, Forst T: Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J Am Coll Cardiol. 2005, 45: 1925-1931.CrossRefPubMed Pfützner A, Marx N, Lübben G, Langenfeld M, Walcher D, Konrad T, Forst T: Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J Am Coll Cardiol. 2005, 45: 1925-1931.CrossRefPubMed
25.
go back to reference Walcher D, Marx N: Insulin resistance and cardiovascular disease: the role of PPARγ activators beyond their anti-diabetic action. Diab Vasc Dis Res. 2004, 1: 76-81.CrossRefPubMed Walcher D, Marx N: Insulin resistance and cardiovascular disease: the role of PPARγ activators beyond their anti-diabetic action. Diab Vasc Dis Res. 2004, 1: 76-81.CrossRefPubMed
26.
go back to reference Suganami T, Ogawa Y: Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010, 88: 33-39.CrossRefPubMed Suganami T, Ogawa Y: Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010, 88: 33-39.CrossRefPubMed
27.
go back to reference Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, Wolford D, Samaha J: Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care. 2011, 34: 730-733.PubMedCentralCrossRefPubMed Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, Wolford D, Samaha J: Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care. 2011, 34: 730-733.PubMedCentralCrossRefPubMed
28.
go back to reference Phillips SA, Ciaraldi TP, Oh DK, Savu MK, Henry RR: Adiponectin secretion and response to pioglitazone is depot dependent in cutured human adipose tissue. Am J Physiol Endocrinol Metab. 2008, 295: E842-E850.PubMedCentralCrossRefPubMed Phillips SA, Ciaraldi TP, Oh DK, Savu MK, Henry RR: Adiponectin secretion and response to pioglitazone is depot dependent in cutured human adipose tissue. Am J Physiol Endocrinol Metab. 2008, 295: E842-E850.PubMedCentralCrossRefPubMed
29.
go back to reference Fain JN, Cowan GS, Buffington C, Andersen RN, Pouncey L, Bahouth SW: Regulation of leptin release by troglitazone in human adipose tissue. Metabolism. 2000, 49: 1485-1490.CrossRefPubMed Fain JN, Cowan GS, Buffington C, Andersen RN, Pouncey L, Bahouth SW: Regulation of leptin release by troglitazone in human adipose tissue. Metabolism. 2000, 49: 1485-1490.CrossRefPubMed
30.
go back to reference Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA: Increase plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab. 2006, 290: E42-E46.CrossRefPubMed Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA: Increase plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab. 2006, 290: E42-E46.CrossRefPubMed
31.
go back to reference Iacobelis G, Corradi D, Sharma AM: Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nature. 2005, 2: 536-543. Iacobelis G, Corradi D, Sharma AM: Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nature. 2005, 2: 536-543.
32.
go back to reference Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y: Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003, 107: 671-674.CrossRefPubMed Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y: Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003, 107: 671-674.CrossRefPubMed
33.
go back to reference Teijeira-Fernandez E, Eiras S, Shamagian LG: Epicardial adipose tissue adiponectin in patients with metabolic syndrome. Cytokine. 2011, 54: 185-190.CrossRefPubMed Teijeira-Fernandez E, Eiras S, Shamagian LG: Epicardial adipose tissue adiponectin in patients with metabolic syndrome. Cytokine. 2011, 54: 185-190.CrossRefPubMed
34.
go back to reference Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De Santis V, Vitale D, Tritapepe L, Letizia C: Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res. 2009, 41 (3): 227-231.CrossRefPubMed Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De Santis V, Vitale D, Tritapepe L, Letizia C: Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res. 2009, 41 (3): 227-231.CrossRefPubMed
35.
go back to reference Iacobellis G, Cotesta D, Petramala L, De Santis V, Vitale D, Tritapepe L, Letizia C: Intracoronary adiponectin levels rapidly and significantly increase after coronary revascularization. Int J Cardiol. 2010, 144 (1): 160-163.CrossRefPubMed Iacobellis G, Cotesta D, Petramala L, De Santis V, Vitale D, Tritapepe L, Letizia C: Intracoronary adiponectin levels rapidly and significantly increase after coronary revascularization. Int J Cardiol. 2010, 144 (1): 160-163.CrossRefPubMed
36.
go back to reference Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, Acha-Orbea H, Finke D: Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity. 2007, 26: 643-654.CrossRefPubMed Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, Acha-Orbea H, Finke D: Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity. 2007, 26: 643-654.CrossRefPubMed
37.
go back to reference Lötzer K, Döpping S, Connert S, Gräbner R, Spanbroek R, Lemser B, Beer M, Hildner M, Hehlgans T, van der Wall M, Mebius RE, Lovas A, Randolph GJ, Weih F, Habenicht AJ: Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler Thromb Vasc Biol. 2010, 30: 395-402.PubMedCentralCrossRefPubMed Lötzer K, Döpping S, Connert S, Gräbner R, Spanbroek R, Lemser B, Beer M, Hildner M, Hehlgans T, van der Wall M, Mebius RE, Lovas A, Randolph GJ, Weih F, Habenicht AJ: Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler Thromb Vasc Biol. 2010, 30: 395-402.PubMedCentralCrossRefPubMed
38.
go back to reference Drayton DL, Liao S, Mounzer RH, Ruddle NH: Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. 2006, 7: 344-353.CrossRefPubMed Drayton DL, Liao S, Mounzer RH, Ruddle NH: Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. 2006, 7: 344-353.CrossRefPubMed
Metadata
Title
Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome
Authors
Adriana Ferreira Grosso
Sérgio Ferreira de Oliveira
Maria de Lourdes Higuchi
Desidério Favarato
Luís Alberto de Oliveira Dallan
Protásio Lemos da Luz
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2014
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-6-47

Other articles of this Issue 1/2014

Diabetology & Metabolic Syndrome 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.