Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2012

Open Access 01-12-2012 | Review

Body composition study by dual-energy x-ray absorptiometry in familial partial lipodystrophy: finding new tools for an objective evaluation

Authors: Cynthia M Valerio, Lenita Zajdenverg, Jose Egidio P de Oliveira, Patricia B Mory, Regina Moyses, Amélio F Godoy-Matos

Published in: Diabetology & Metabolic Syndrome | Issue 1/2012

Login to get access

Abstract

Background

Familial partial lipodystrophies (FPLD) are clinically heterogeneous disorders characterized by selective loss of adipose tissue, insulin resistance and metabolic complications. Until genetic studies become available for clinical practice, clinical suspicion and pattern of fat loss are the only parameters leading clinicians to consider the diagnosis. The objective of this study was to compare body composition by dual energy X-ray absorptiometry (DXA) in patients with FPLD and control subjects, aiming to find objective variables for evaluation of FPLD.

Methods

Eighteen female patients with partial lipodystrophy phenotype and 16 healthy controls, matched for body mass index, sex and age were studied. All participants had body fat distribution evaluated by DXA measures. Fasting blood samples were obtained for evaluation of plasma leptin, lipid profile and inflammatory markers. Genetic studies were carried out on the 18 patients selected that were included for statistical analysis. Thirteen women confirmed diagnosis of Dunnigan-type FPLD (FPLD2).

Results

DXA revealed a marked decrease in truncal fat and 3 folds decrease in limbs fat percentage in FPLD2 patients (p <0.001). Comparative analysis showed that ratio between trunk and lower limbs fat mass, characterized as Fat Mass Ratio (FMR), had a greater value in FLPD2 group (1.86 ± 0.43 vs controls 0.93 ± 0.10; p <0.001) and a improved accuracy for evaluating FPLD2 with a cut-off point of 1.2. Furthermore, affected women showed hypoleptinemia (FLPD2 4.9 ± 2.0 vs controls 18.2 ± 6.8; p <0.001), insulin resistance and a more aggressive lipid profile.

Conclusion

In this study, assessment of body fat distribution by DXA permitted an objective characterization of FLPD2. A consistent pattern with marked fat reduction of lower body was observed in affected patients. To our knowledge this is the first time that cut-off values of objective variables were proposed for evaluation of FPLD2.
Appendix
Available only for authorised users
Literature
1.
go back to reference Garg A: Acquired and Inherited Lipodystrophies. N Engl J Med. 2004, 350: 1220-1234. 10.1056/NEJMra025261.CrossRefPubMed Garg A: Acquired and Inherited Lipodystrophies. N Engl J Med. 2004, 350: 1220-1234. 10.1056/NEJMra025261.CrossRefPubMed
3.
go back to reference Haque WA, Vultch F, Garg A: Post-mortem findings in familial partial lipodistrophy, Dunnigan Variety. Diabet Med. 2002, 19 (12): 1022-1025. 10.1046/j.1464-5491.2002.00796.x.CrossRefPubMed Haque WA, Vultch F, Garg A: Post-mortem findings in familial partial lipodistrophy, Dunnigan Variety. Diabet Med. 2002, 19 (12): 1022-1025. 10.1046/j.1464-5491.2002.00796.x.CrossRefPubMed
4.
go back to reference Garg A: Clinical review#: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011, 96 (11): 3313-3325. 10.1210/jc.2011-1159.CrossRefPubMed Garg A: Clinical review#: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011, 96 (11): 3313-3325. 10.1210/jc.2011-1159.CrossRefPubMed
5.
go back to reference Al-Atar S, Pollex RL, Robinson JF: Quantitative and qualitative differences in subcutaneous adipose tissue stores across lipodystrophy types shown by magnetic resonance imaging. BMC Medical Imaging. 2007, 7: 3-10.1186/1471-2342-7-3.CrossRef Al-Atar S, Pollex RL, Robinson JF: Quantitative and qualitative differences in subcutaneous adipose tissue stores across lipodystrophy types shown by magnetic resonance imaging. BMC Medical Imaging. 2007, 7: 3-10.1186/1471-2342-7-3.CrossRef
6.
go back to reference Garg A, Peshock RM, Fleckenstein JL: Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan Variety). J Clin Endocrinol Metab. 1999, 84: 170-174. 10.1210/jc.84.1.170.PubMed Garg A, Peshock RM, Fleckenstein JL: Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan Variety). J Clin Endocrinol Metab. 1999, 84: 170-174. 10.1210/jc.84.1.170.PubMed
7.
go back to reference Pandey SN, Pungavkar SA, Vaidya RA: An imaging study of body composition including lipodeposition pattern in a patient of familial partial lipodystrophy (Dunnigan type). J Assoc Physicians India. 2005, 53: 897-900.PubMed Pandey SN, Pungavkar SA, Vaidya RA: An imaging study of body composition including lipodeposition pattern in a patient of familial partial lipodystrophy (Dunnigan type). J Assoc Physicians India. 2005, 53: 897-900.PubMed
8.
go back to reference Valerio CM, Godoy-Matos A, Moreira RO: Dual-Energy X-ray Absorptiometry Study of Body Composition in Patients with Lipodystrophy. Diab Care. 2007, 30 (7): 1857-1859. 10.2337/dc07-0025.CrossRef Valerio CM, Godoy-Matos A, Moreira RO: Dual-Energy X-ray Absorptiometry Study of Body Composition in Patients with Lipodystrophy. Diab Care. 2007, 30 (7): 1857-1859. 10.2337/dc07-0025.CrossRef
9.
go back to reference Godoy-Matos AF, Moreira RO, Valerio CM, Mory PB, Moises RS: A new method for body fat evaluation, body adiposity index, is useful in women with familial partial lipodystrophy. Obesity. 2012, 20 (2): 440-443. 10.1038/oby.2011.343.CrossRefPubMed Godoy-Matos AF, Moreira RO, Valerio CM, Mory PB, Moises RS: A new method for body fat evaluation, body adiposity index, is useful in women with familial partial lipodystrophy. Obesity. 2012, 20 (2): 440-443. 10.1038/oby.2011.343.CrossRefPubMed
10.
go back to reference Bonnet E, Delpierre C, Sommet A: Total body composition by DXA of 241 HIV-negative men and 162 HIV-infected men: proposal of reference values for defining lipodystrophy. J Clin Densitom. 2005, 8 (3): 287-292. 10.1385/JCD:8:3:287.CrossRefPubMed Bonnet E, Delpierre C, Sommet A: Total body composition by DXA of 241 HIV-negative men and 162 HIV-infected men: proposal of reference values for defining lipodystrophy. J Clin Densitom. 2005, 8 (3): 287-292. 10.1385/JCD:8:3:287.CrossRefPubMed
11.
go back to reference Degris E, Delpierre C, Sommet A: Longitudinal study of body composition of 10 HIV men with lipodystrophy: dual-energy X-ray criteria for clinical evolution. J Clin Densitom. 2010, 13 (2): 237-244. 10.1016/j.jocd.2009.12.004.CrossRefPubMed Degris E, Delpierre C, Sommet A: Longitudinal study of body composition of 10 HIV men with lipodystrophy: dual-energy X-ray criteria for clinical evolution. J Clin Densitom. 2010, 13 (2): 237-244. 10.1016/j.jocd.2009.12.004.CrossRefPubMed
12.
go back to reference Freitas P, Santos AC, Carvalho D: Fat mass ratio: an objective tool to define lipodystrophy in HIV-infected patients under antiretroviral therapy. J Clin Densitom. 2010, 13 (2): 197-203. 10.1016/j.jocd.2010.01.005.CrossRefPubMed Freitas P, Santos AC, Carvalho D: Fat mass ratio: an objective tool to define lipodystrophy in HIV-infected patients under antiretroviral therapy. J Clin Densitom. 2010, 13 (2): 197-203. 10.1016/j.jocd.2010.01.005.CrossRefPubMed
13.
go back to reference Mory PB, Crispim F, Freire MB, Salles JE, Valério CM, Godoy-Matos AF, Dib SA, Moisés RS: Phenotipic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol. 2012, 167 (3): 423-431. 10.1530/EJE-12-0268.CrossRefPubMed Mory PB, Crispim F, Freire MB, Salles JE, Valério CM, Godoy-Matos AF, Dib SA, Moisés RS: Phenotipic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol. 2012, 167 (3): 423-431. 10.1530/EJE-12-0268.CrossRefPubMed
14.
go back to reference Van Pelt RE, Jankowski CM, Gozansky WS, Schwartz RS, Kohrt WM: Lower-body adiposity and metabolic protection in postmenopausal women. J Clin Endocrinol Metab. 2005, 90 (8): 4573-4578. 10.1210/jc.2004-1764.PubMedCentralCrossRefPubMed Van Pelt RE, Jankowski CM, Gozansky WS, Schwartz RS, Kohrt WM: Lower-body adiposity and metabolic protection in postmenopausal women. J Clin Endocrinol Metab. 2005, 90 (8): 4573-4578. 10.1210/jc.2004-1764.PubMedCentralCrossRefPubMed
15.
go back to reference Tanko LB, Bagger YZ, Alexandersen P: Peripheral adiposity exhibits an independent dominant antiatherogeniceffect in elderly women. Circulation. 2003, 107: 1626-1631. 10.1161/01.CIR.0000057974.74060.68.CrossRefPubMed Tanko LB, Bagger YZ, Alexandersen P: Peripheral adiposity exhibits an independent dominant antiatherogeniceffect in elderly women. Circulation. 2003, 107: 1626-1631. 10.1161/01.CIR.0000057974.74060.68.CrossRefPubMed
16.
go back to reference Rocha PM, Barata JT, Teixeira PJ: Independent and opposite associations of hip and waist circumference with metabolic syndrome components and with inflammatory and atherothrombotic risk factors in overweight and obese women. Metabolism. 2008, 57 (10): 1315-1322. 10.1016/j.metabol.2008.01.003.CrossRefPubMed Rocha PM, Barata JT, Teixeira PJ: Independent and opposite associations of hip and waist circumference with metabolic syndrome components and with inflammatory and atherothrombotic risk factors in overweight and obese women. Metabolism. 2008, 57 (10): 1315-1322. 10.1016/j.metabol.2008.01.003.CrossRefPubMed
17.
go back to reference Kobberling J, Dunnigan MG: Familial partial lipodystrophy: Two types of an X linked dominant syndrome, lethal in the hemizygous state. J Med Genet. 1986, 23: 120-127. 10.1136/jmg.23.2.120.PubMedCentralCrossRefPubMed Kobberling J, Dunnigan MG: Familial partial lipodystrophy: Two types of an X linked dominant syndrome, lethal in the hemizygous state. J Med Genet. 1986, 23: 120-127. 10.1136/jmg.23.2.120.PubMedCentralCrossRefPubMed
18.
go back to reference Kobberling J, Schwarck H, Cremer P, Fiechtl J, Seidel D, Creutzfeldt W: Partielle lipodystrophie mit lipatrophischem diabetes und hyperlipoproteinamie. Verh Dtsch Ges Inn Med. 1981, 87: 958-961. Kobberling J, Schwarck H, Cremer P, Fiechtl J, Seidel D, Creutzfeldt W: Partielle lipodystrophie mit lipatrophischem diabetes und hyperlipoproteinamie. Verh Dtsch Ges Inn Med. 1981, 87: 958-961.
19.
go back to reference Herbst K, Tannock LR, Deeb SS: Kobberling type of familial partial lipodystrophy. Diab Care. 2003, 26 (3): 1819-1824.CrossRef Herbst K, Tannock LR, Deeb SS: Kobberling type of familial partial lipodystrophy. Diab Care. 2003, 26 (3): 1819-1824.CrossRef
20.
go back to reference Hegele RA, Joy TR, Al-Attar S, Rutt BK: Lipodystrophies: windows on adipose biology and metabolism. Journal of Lipid Research. 2007, 48: 1433-1444. 10.1194/jlr.R700004-JLR200.CrossRefPubMed Hegele RA, Joy TR, Al-Attar S, Rutt BK: Lipodystrophies: windows on adipose biology and metabolism. Journal of Lipid Research. 2007, 48: 1433-1444. 10.1194/jlr.R700004-JLR200.CrossRefPubMed
21.
go back to reference Van Harmelen V, Reynisdottir S, Eriksson P: Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998, 47: 913-917. 10.2337/diabetes.47.6.913.CrossRefPubMed Van Harmelen V, Reynisdottir S, Eriksson P: Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998, 47: 913-917. 10.2337/diabetes.47.6.913.CrossRefPubMed
22.
go back to reference Hegele RA, Cao H, Huff MW: LMNA R482Q mutation associated with reduced plasma leptin concentration. J Clin Endocrinol Metab. 2000, 85 (9): 3089-3093. 10.1210/jc.85.9.3089.PubMed Hegele RA, Cao H, Huff MW: LMNA R482Q mutation associated with reduced plasma leptin concentration. J Clin Endocrinol Metab. 2000, 85 (9): 3089-3093. 10.1210/jc.85.9.3089.PubMed
Metadata
Title
Body composition study by dual-energy x-ray absorptiometry in familial partial lipodystrophy: finding new tools for an objective evaluation
Authors
Cynthia M Valerio
Lenita Zajdenverg
Jose Egidio P de Oliveira
Patricia B Mory
Regina Moyses
Amélio F Godoy-Matos
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2012
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-4-40

Other articles of this Issue 1/2012

Diabetology & Metabolic Syndrome 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.