Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3

Authors: Liang Zhu, Hua Qin, Pei-Yuan Li, Sheng-Nan Xu, Hui-Fang Pang, Hui-Zhen Zhao, De-Min Li, Qiu Zhao

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

Background

Response gene to complement-32 (RGC-32) is comprehensively expressed in many kinds of tissues and has been reported to be expressed abnormally in different kinds of human tumors. However, the role of RGC-32 in cancer remains controversial and no reports have described the effect of RGC-32 in pancreatic cancer. The present study investigated the expression of RGC-32 in pancreatic cancer tissues and explored the role of RGC-32 in transforming growth factor-beta (TGF-β)-induced epithelial-mesenchymal transition (EMT) in human pancreatic cancer cell line BxPC-3.

Methods

Immunohistochemical staining of RGC-32 and E-cadherin was performed on specimens from 42 patients with pancreatic cancer, 12 with chronic pancreatitis and 8 with normal pancreas. To evaluate the role of RGC-32 in TGF-β-induced EMT in pancreatic cancer cells, BxPC-3 cells were treated with TGF-β1, and RGC-32 siRNA silencing and gene overexpression were performed as well. The mRNA expression and protein expression of RGC-32 and EMT markers such E-cadherin and vimentin were determined by quantitative reverse transcription-PCR (qRT-PCR) and western blot respectively. Finally, migration ability of BxPC-3 cells treated with TGF-β and RGC-32 siRNA transfection was examined by transwell cell migration assay.

Results

We found stronger expression of RGC-32 and higher abnormal expression rate of E-cadherin in pancreatic cancer tissues than those in chronic pancreatitis tissues and normal pancreatic tissues. Immunohistochemical analysis revealed that both RGC-32 positive expression and E-cadherin abnormal expression in pancreatic cancer were correlated with lymph node metastasis and TNM staging. In addition, a significant and positive correlation was found between positive expression of RGC-32 and abnormal expression of E-cadherin. Furthermore, in vitro, we found sustained TGF-β stimuli induced EMT and up-regulated RGC-32 expression in BxPC-3 cells. By means of siRNA silencing and gene overexpression, we further demonstrated that RGC-32 mediated TGF-β-induced EMT and migration in BxPC-3 cells.

Conclusions

The results above indicated that RGC-32 might be a novel metastasis promoting gene in pancreatic cancer and it enhances metastatic phenotype by mediating TGF-β-induced EMT in human pancreatic cancer cell line BxPC-3.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stathis A, Moore MJ: Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010, 7: 163-172. 10.1038/nrclinonc.2009.236.CrossRefPubMed Stathis A, Moore MJ: Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010, 7: 163-172. 10.1038/nrclinonc.2009.236.CrossRefPubMed
3.
go back to reference Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9: 265-273. 10.1038/nrc2620.CrossRefPubMed Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9: 265-273. 10.1038/nrc2620.CrossRefPubMed
4.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139: 871-890. 10.1016/j.cell.2009.11.007.CrossRefPubMed Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139: 871-890. 10.1016/j.cell.2009.11.007.CrossRefPubMed
5.
go back to reference Truty MJ, Urrutia R: Basics of TGF-beta and pancreatic cancer. Pancreatology. 2007, 7: 423-435. 10.1159/000108959.CrossRefPubMed Truty MJ, Urrutia R: Basics of TGF-beta and pancreatic cancer. Pancreatology. 2007, 7: 423-435. 10.1159/000108959.CrossRefPubMed
6.
go back to reference Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress TM: Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001, 61: 4222-4228.PubMed Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress TM: Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001, 61: 4222-4228.PubMed
7.
go back to reference Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006, 20: 3130-3146. 10.1101/gad.1478706.PubMedCentralCrossRefPubMed Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006, 20: 3130-3146. 10.1101/gad.1478706.PubMedCentralCrossRefPubMed
8.
go back to reference Levy L, Hill CS: Smad4 dependency defines two classes of transforming growth factor beta (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol. 2005, 25: 8108-8125. 10.1128/MCB.25.18.8108-8125.2005.PubMedCentralCrossRefPubMed Levy L, Hill CS: Smad4 dependency defines two classes of transforming growth factor beta (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol. 2005, 25: 8108-8125. 10.1128/MCB.25.18.8108-8125.2005.PubMedCentralCrossRefPubMed
9.
go back to reference Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A: TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci. 2005, 118: 4901-4912. 10.1242/jcs.02594.CrossRefPubMed Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A: TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci. 2005, 118: 4901-4912. 10.1242/jcs.02594.CrossRefPubMed
10.
go back to reference Badea TC, Niculescu FI, Soane L, Shin ML, Rus H: Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998, 273: 26977-26981. 10.1074/jbc.273.41.26977.CrossRefPubMed Badea TC, Niculescu FI, Soane L, Shin ML, Rus H: Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998, 273: 26977-26981. 10.1074/jbc.273.41.26977.CrossRefPubMed
11.
go back to reference Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, Shin ML, Rus H: RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002, 277: 502-508.CrossRefPubMed Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, Shin ML, Rus H: RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002, 277: 502-508.CrossRefPubMed
12.
go back to reference Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, Chen S: Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem. 2007, 282: 10133-10137. 10.1074/jbc.C600225200.CrossRefPubMed Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, Chen S: Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem. 2007, 282: 10133-10137. 10.1074/jbc.C600225200.CrossRefPubMed
13.
go back to reference Fosbrink M, Cudrici C, Niculescu F, Badea TC, David S, Shamsuddin A, Shin ML, Rus H: Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol. 2005, 78: 116-122. 10.1016/j.yexmp.2004.11.001.CrossRefPubMed Fosbrink M, Cudrici C, Niculescu F, Badea TC, David S, Shamsuddin A, Shin ML, Rus H: Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol. 2005, 78: 116-122. 10.1016/j.yexmp.2004.11.001.CrossRefPubMed
14.
go back to reference Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, Inazawa J: RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene. 2007, 26: 1110-1121. 10.1038/sj.onc.1210148.CrossRefPubMed Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, Inazawa J: RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene. 2007, 26: 1110-1121. 10.1038/sj.onc.1210148.CrossRefPubMed
15.
go back to reference Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, Guise TA, Massagué J: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003, 3: 537-549. 10.1016/S1535-6108(03)00132-6.CrossRefPubMed Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, Guise TA, Massagué J: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003, 3: 537-549. 10.1016/S1535-6108(03)00132-6.CrossRefPubMed
16.
go back to reference Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA: Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007, 7: 64-10.1186/1471-2407-7-64.PubMedCentralCrossRefPubMed Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA: Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007, 7: 64-10.1186/1471-2407-7-64.PubMedCentralCrossRefPubMed
17.
go back to reference AJCC cancer staging manual. Edited by: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. 2010, New York: Springer, 7 AJCC cancer staging manual. Edited by: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. 2010, New York: Springer, 7
18.
go back to reference Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, Rus V, Chen H, Mircea PA, Shamsuddin A, Rus H: Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 2010, 88: 67-76. 10.1016/j.yexmp.2009.10.010.PubMedCentralCrossRefPubMed Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, Rus V, Chen H, Mircea PA, Shamsuddin A, Rus H: Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 2010, 88: 67-76. 10.1016/j.yexmp.2009.10.010.PubMedCentralCrossRefPubMed
19.
go back to reference Jawhari A, Jordan S, Poole S, Browne P, Pignatelli M, Farthing MJ: Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma: relationship with patient survival. Gastroenterology. 1997, 112: 46-54. 10.1016/S0016-5085(97)70218-X.CrossRefPubMed Jawhari A, Jordan S, Poole S, Browne P, Pignatelli M, Farthing MJ: Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma: relationship with patient survival. Gastroenterology. 1997, 112: 46-54. 10.1016/S0016-5085(97)70218-X.CrossRefPubMed
20.
go back to reference Wang Y, Zhao Q, Ma S, Yang F, Gong Y, Ke C: Sirolimus inhibits human pancreatic carcinoma cell proliferation by a mechanism linked to the targeting of mTOR/HIF-1 alpha/VEGF signaling. IUBMB Life. 2007, 59: 717-721. 10.1080/15216540701646484.CrossRefPubMed Wang Y, Zhao Q, Ma S, Yang F, Gong Y, Ke C: Sirolimus inhibits human pancreatic carcinoma cell proliferation by a mechanism linked to the targeting of mTOR/HIF-1 alpha/VEGF signaling. IUBMB Life. 2007, 59: 717-721. 10.1080/15216540701646484.CrossRefPubMed
21.
go back to reference Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.CrossRefPubMed Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.CrossRefPubMed
22.
go back to reference Cano CE, Motoo Y, Iovanna JL: Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. Scientific World Journal. 2010, 10: 1947-1957.CrossRefPubMed Cano CE, Motoo Y, Iovanna JL: Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. Scientific World Journal. 2010, 10: 1947-1957.CrossRefPubMed
23.
go back to reference Massague J, Chen YG: Controlling TGF-beta signaling. Genes Dev. 2000, 14: 627-644.PubMed Massague J, Chen YG: Controlling TGF-beta signaling. Genes Dev. 2000, 14: 627-644.PubMed
24.
go back to reference Wrana JL, Attisano L: The Smad pathway. Cytokine Growth Factor Rev. 2000, 11: 5-13. 10.1016/S1359-6101(99)00024-6.CrossRefPubMed Wrana JL, Attisano L: The Smad pathway. Cytokine Growth Factor Rev. 2000, 11: 5-13. 10.1016/S1359-6101(99)00024-6.CrossRefPubMed
25.
go back to reference Wendt MK, Allington TM, Schiemann WP: Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol. 2009, 5: 1145-1168. 10.2217/fon.09.90.PubMedCentralCrossRefPubMed Wendt MK, Allington TM, Schiemann WP: Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol. 2009, 5: 1145-1168. 10.2217/fon.09.90.PubMedCentralCrossRefPubMed
26.
go back to reference Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ: Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010, 39: 425-435. 10.1097/MPA.0b013e3181c15963.PubMedCentralCrossRefPubMed Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ: Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010, 39: 425-435. 10.1097/MPA.0b013e3181c15963.PubMedCentralCrossRefPubMed
27.
go back to reference Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH: Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000, 60: 2002-2006.PubMed Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH: Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000, 60: 2002-2006.PubMed
28.
go back to reference Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY: RGC-32 mediates transforming growth factor-beta- induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009, 284: 9426-9432. 10.1074/jbc.M900039200.PubMedCentralCrossRefPubMed Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY: RGC-32 mediates transforming growth factor-beta- induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009, 284: 9426-9432. 10.1074/jbc.M900039200.PubMedCentralCrossRefPubMed
30.
go back to reference von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, Schnieke A, Schmid RM, Schneider G, Saur D: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009, 137: 361-371. 10.1053/j.gastro.2009.04.004.CrossRefPubMed von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, Schnieke A, Schmid RM, Schneider G, Saur D: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009, 137: 361-371. 10.1053/j.gastro.2009.04.004.CrossRefPubMed
31.
go back to reference Pryczynicz A, Guzińska-Ustymowicz K, Kemona A, Czyzewska J: Expression of the E-cadherin-catenin complex in patients with pancreatic ductal adenocarcinoma. Folia Histochem Cytobiol. 2010, 48: 128-133. 10.2478/v10042-008-0089-1.PubMed Pryczynicz A, Guzińska-Ustymowicz K, Kemona A, Czyzewska J: Expression of the E-cadherin-catenin complex in patients with pancreatic ductal adenocarcinoma. Folia Histochem Cytobiol. 2010, 48: 128-133. 10.2478/v10042-008-0089-1.PubMed
32.
go back to reference Tanaka M, Kitajima Y, Edakuni G, Sato S, Miyazaki K: Abnormal expression of E-cadherin and beta-catenin may be a molecular marker of submucosal invasion and lymph node metastasis in early gastric cancer. Br J Surg. 2002, 89: 236-244.PubMed Tanaka M, Kitajima Y, Edakuni G, Sato S, Miyazaki K: Abnormal expression of E-cadherin and beta-catenin may be a molecular marker of submucosal invasion and lymph node metastasis in early gastric cancer. Br J Surg. 2002, 89: 236-244.PubMed
Metadata
Title
Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3
Authors
Liang Zhu
Hua Qin
Pei-Yuan Li
Sheng-Nan Xu
Hui-Fang Pang
Hui-Zhen Zhao
De-Min Li
Qiu Zhao
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-29

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine