Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma

Authors: Eleonora Brunello, Matteo Brunelli, Giuseppe Bogina, Anna Caliò, Erminia Manfrin, Alessia Nottegar, Marco Vergine, Annamaria Molino, Emilio Bria, Francesco Massari, Giampaolo Tortora, Sara Cingarlini, Serena Pedron, Marco Chilosi, Giuseppe Zamboni, Keith Miller, Guido Martignoni, Franco Bonetti

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

Background

Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed.

Methods

Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases.
FGFR-1 gene (8p12) amplification was evaluated by chromogenic in situ hybridization (CISH) analysis. Her-2/neu and topoisomerase-IIα gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals) versus gains (3–6 signals) of the locus specific FGFR-1 gene.

Results

Three (20%) primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification), six cases (40%) had a mean of three (range 3–6) chromogenic signals (gains) whereas in 6 (40%) was not observed any abnormality. Three of 15 metastasis (20%) were amplified, 2/15 (13,4%) did not. The ten remaining cases (66,6%) showed three chromogenic signals.
The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6%) case. Topoisomerase-IIα was not amplified in all cases.

Conclusions

1) a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2) a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3) in the era of tailored therapies, patients affected by the lobular subtype of breast carcinoma with FGFR1 amplification could be approached to the new target biological therapy such as emerging FGFR-1 inhibitors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berruti A, Generali D, Kaufmann M, Puztai L, Curigliano G, Aglietta M, Gianni L, Miller WR, Untch M, Sotiriou C, et al.: International expert consensus on primary systemic therapy in the management of early breast cancer: highlights of the fourth symposium on primary systemic therapy in the management of operable breast cancer, Cremona, Italy (2010). J Natl Cancer Inst Monogr. 2011, 2011: 147-151. 10.1093/jncimonographs/lgr037.CrossRefPubMed Berruti A, Generali D, Kaufmann M, Puztai L, Curigliano G, Aglietta M, Gianni L, Miller WR, Untch M, Sotiriou C, et al.: International expert consensus on primary systemic therapy in the management of early breast cancer: highlights of the fourth symposium on primary systemic therapy in the management of operable breast cancer, Cremona, Italy (2010). J Natl Cancer Inst Monogr. 2011, 2011: 147-151. 10.1093/jncimonographs/lgr037.CrossRefPubMed
2.
go back to reference Brunello E, Brunelli M, Manfrin E, Nottegar A, Bersani S, Vergine M, Molino A, Fiorio E, Chilosi M, Gobbo S, Martignoni G, Bonetti F: Classical lobular breast carcinoma consistently lacks topoisomerase-IIalpha gene amplification: implications for the tailored use of anthracycline-based chemotherapies. Histopathology. 2012, 60: 482-488. 10.1111/j.1365-2559.2011.04067.x.CrossRefPubMed Brunello E, Brunelli M, Manfrin E, Nottegar A, Bersani S, Vergine M, Molino A, Fiorio E, Chilosi M, Gobbo S, Martignoni G, Bonetti F: Classical lobular breast carcinoma consistently lacks topoisomerase-IIalpha gene amplification: implications for the tailored use of anthracycline-based chemotherapies. Histopathology. 2012, 60: 482-488. 10.1111/j.1365-2559.2011.04067.x.CrossRefPubMed
3.
go back to reference Vergine M, Brunelli M, Martignoni G, Brunello E, Miller K, Pecori S, Bersani S, Chilosi M, Menestrina F, Manfrin E, Bonetti F: Suitability of infiltrative lobular breast carcinoma for anti-human epidermal growth factor receptor 2 treatment after the ASCO/CAP and 2009 St Gallen International Expert Consensus meeting. Histopathology. 2010, 57: 935-940.CrossRefPubMed Vergine M, Brunelli M, Martignoni G, Brunello E, Miller K, Pecori S, Bersani S, Chilosi M, Menestrina F, Manfrin E, Bonetti F: Suitability of infiltrative lobular breast carcinoma for anti-human epidermal growth factor receptor 2 treatment after the ASCO/CAP and 2009 St Gallen International Expert Consensus meeting. Histopathology. 2010, 57: 935-940.CrossRefPubMed
4.
go back to reference Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau SW, Broglio K, Theriault RL, Valero V, Buzdar AU, Kuerer H, Buccholz TA, Hortobagyi GN: Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005, 23: 41-48.CrossRefPubMed Cristofanilli M, Gonzalez-Angulo A, Sneige N, Kau SW, Broglio K, Theriault RL, Valero V, Buzdar AU, Kuerer H, Buccholz TA, Hortobagyi GN: Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005, 23: 41-48.CrossRefPubMed
5.
go back to reference Gozgit JM, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan NI, Shakespeare WC, Wang F, Clackson T, Rivera VM: Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther. 2012, 11: 690-699. 10.1158/1535-7163.MCT-11-0450.CrossRefPubMed Gozgit JM, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan NI, Shakespeare WC, Wang F, Clackson T, Rivera VM: Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther. 2012, 11: 690-699. 10.1158/1535-7163.MCT-11-0450.CrossRefPubMed
6.
go back to reference Patel RR, Sengupta S, Kim HR, Klein-Szanto AJ, Pyle JR, Zhu F, Li T, Ross EA, Oseni S, Fargnoli J, Jordan VC: Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: a potential clinical application of angiogenesis inhibitors. Eur J Cancer. 2010, 46: 1537-1553. 10.1016/j.ejca.2010.02.018.PubMedCentralCrossRefPubMed Patel RR, Sengupta S, Kim HR, Klein-Szanto AJ, Pyle JR, Zhu F, Li T, Ross EA, Oseni S, Fargnoli J, Jordan VC: Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: a potential clinical application of angiogenesis inhibitors. Eur J Cancer. 2010, 46: 1537-1553. 10.1016/j.ejca.2010.02.018.PubMedCentralCrossRefPubMed
7.
go back to reference Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A, Grigoriadis A, Sarrio D, Savage K, Dexter T, et al.: FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res. 2006, 12: 6652-6662. 10.1158/1078-0432.CCR-06-1164.CrossRefPubMed Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A, Grigoriadis A, Sarrio D, Savage K, Dexter T, et al.: FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res. 2006, 12: 6652-6662. 10.1158/1078-0432.CCR-06-1164.CrossRefPubMed
8.
go back to reference Ayers M, Fargnoli J, Lewin A, Wu Q, Platero JS: Discovery and validation of biomarkers that respond to treatment with brivanib alaninate, a small-molecule VEGFR-2/FGFR-1 antagonist. Cancer Res. 2007, 67: 6899-906. 10.1158/0008-5472.CAN-06-4555.CrossRefPubMed Ayers M, Fargnoli J, Lewin A, Wu Q, Platero JS: Discovery and validation of biomarkers that respond to treatment with brivanib alaninate, a small-molecule VEGFR-2/FGFR-1 antagonist. Cancer Res. 2007, 67: 6899-906. 10.1158/0008-5472.CAN-06-4555.CrossRefPubMed
9.
go back to reference Andre F, Bachelot TD, Campone M, Dalenc F, Perez-Garcia JM, Hurvitz SA, Turner NC, Rugo HS, Shi MM, Zhang Y, Kay A, Yovine AJ, Baselga J: A multicenter, open-label phase II trial of dovitinib, an FGFR1 inhibitor, in FGFR1 amplified and non-amplified metastatic breast cancer. J Clin Oncol. 2011, 508: Suppl 508- Andre F, Bachelot TD, Campone M, Dalenc F, Perez-Garcia JM, Hurvitz SA, Turner NC, Rugo HS, Shi MM, Zhang Y, Kay A, Yovine AJ, Baselga J: A multicenter, open-label phase II trial of dovitinib, an FGFR1 inhibitor, in FGFR1 amplified and non-amplified metastatic breast cancer. J Clin Oncol. 2011, 508: Suppl 508-
10.
go back to reference Koziczak M, Holbro T, Hynes NE: Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene. 2004, 23: 3501-3508. 10.1038/sj.onc.1207331.CrossRefPubMed Koziczak M, Holbro T, Hynes NE: Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene. 2004, 23: 3501-3508. 10.1038/sj.onc.1207331.CrossRefPubMed
11.
go back to reference Brunelli M, Manfrin E, Martignoni G, Bersani S, Remo A, Reghellin D, Chilosi M, Bonetti F: HER-2/neu assessment in breast cancer using the original FDA and new ASCO/CAP guideline recommendations: impact on selecting patients for herceptin therapy. Am J Clin Pathol. 2008, 129: 907-911. 10.1309/MD79CDXN1D01E862.CrossRefPubMed Brunelli M, Manfrin E, Martignoni G, Bersani S, Remo A, Reghellin D, Chilosi M, Bonetti F: HER-2/neu assessment in breast cancer using the original FDA and new ASCO/CAP guideline recommendations: impact on selecting patients for herceptin therapy. Am J Clin Pathol. 2008, 129: 907-911. 10.1309/MD79CDXN1D01E862.CrossRefPubMed
12.
go back to reference Perez EA, Spano JP: Current and emerging targeted therapies for metastatic breast cancer. Cancer. 2012, 118: 3014-25. 10.1002/cncr.26356.CrossRefPubMed Perez EA, Spano JP: Current and emerging targeted therapies for metastatic breast cancer. Cancer. 2012, 118: 3014-25. 10.1002/cncr.26356.CrossRefPubMed
13.
go back to reference Baselga J: Novel agents in the era of targeted therapy: what have we learned and how has our practice changed?. Ann Oncol. 2008, 19 (Suppl 7): vii281-vii288.PubMed Baselga J: Novel agents in the era of targeted therapy: what have we learned and how has our practice changed?. Ann Oncol. 2008, 19 (Suppl 7): vii281-vii288.PubMed
14.
go back to reference Massabeau C, Sigal-Zafrani B, Belin L, Savignoni A, Richardson M, Kirova YM, Cohen-Jonathan-Moyal E, Mégnin-Chanet F, Hall J, Fourquet A: The fibroblast growth factor receptor 1 (FGFR1), a marker of response to chemoradiotherapy in breast cancer?. Breast Cancer Res Treat. 2012, 134: 259-266. 10.1007/s10549-012-2027-3.CrossRefPubMed Massabeau C, Sigal-Zafrani B, Belin L, Savignoni A, Richardson M, Kirova YM, Cohen-Jonathan-Moyal E, Mégnin-Chanet F, Hall J, Fourquet A: The fibroblast growth factor receptor 1 (FGFR1), a marker of response to chemoradiotherapy in breast cancer?. Breast Cancer Res Treat. 2012, 134: 259-266. 10.1007/s10549-012-2027-3.CrossRefPubMed
15.
go back to reference Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, Natrajan R, Marchio C, Iorns E, Mackay A, et al.: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010, 70: 2085-2094. 10.1158/0008-5472.CAN-09-3746.PubMedCentralCrossRefPubMed Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, Natrajan R, Marchio C, Iorns E, Mackay A, et al.: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010, 70: 2085-2094. 10.1158/0008-5472.CAN-09-3746.PubMedCentralCrossRefPubMed
16.
go back to reference Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H, et al.: Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One. 2011, 6: e20351-10.1371/journal.pone.0020351.PubMedCentralCrossRefPubMed Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H, et al.: Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One. 2011, 6: e20351-10.1371/journal.pone.0020351.PubMedCentralCrossRefPubMed
17.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012, 366: 883-892. 10.1056/NEJMoa1113205.CrossRefPubMed Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012, 366: 883-892. 10.1056/NEJMoa1113205.CrossRefPubMed
18.
go back to reference Courjal F, Cuny M, Simony-Lafontaine J, Louason G, Speiser P, Zeillinger R, Rodriguez C, Theillet C: Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res. 1997, 57: 4360-4367.PubMed Courjal F, Cuny M, Simony-Lafontaine J, Louason G, Speiser P, Zeillinger R, Rodriguez C, Theillet C: Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res. 1997, 57: 4360-4367.PubMed
19.
go back to reference Kwek SS, Roy R, Zhou H, Climent J, Martinez-Climent JA, Fridlyand J, Albertson DG: Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene. 2009, 28: 1892-1903. 10.1038/onc.2009.34.PubMedCentralCrossRefPubMed Kwek SS, Roy R, Zhou H, Climent J, Martinez-Climent JA, Fridlyand J, Albertson DG: Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene. 2009, 28: 1892-1903. 10.1038/onc.2009.34.PubMedCentralCrossRefPubMed
20.
go back to reference Karlsson E, Waltersson MA, Bostner J, Perez-Tenorio G, Olsson B, Hallbeck AL, Stal O: High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosomes Cancer. 2011, 50: 775-787. 10.1002/gcc.20900.CrossRefPubMed Karlsson E, Waltersson MA, Bostner J, Perez-Tenorio G, Olsson B, Hallbeck AL, Stal O: High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosomes Cancer. 2011, 50: 775-787. 10.1002/gcc.20900.CrossRefPubMed
21.
go back to reference Gelsi-Boyer V, Orsetti B, Cervera N, Finetti P, Sircoulomb F, Rouge C, Lasorsa L, Letessier A, Ginestier C, Monville F, et al.: Comprehensive profiling of 8p11-12 amplification in breast cancer. Mol Cancer Res. 2005, 3: 655-667. 10.1158/1541-7786.MCR-05-0128.CrossRefPubMed Gelsi-Boyer V, Orsetti B, Cervera N, Finetti P, Sircoulomb F, Rouge C, Lasorsa L, Letessier A, Ginestier C, Monville F, et al.: Comprehensive profiling of 8p11-12 amplification in breast cancer. Mol Cancer Res. 2005, 3: 655-667. 10.1158/1541-7786.MCR-05-0128.CrossRefPubMed
22.
go back to reference Adelaide J, Chaffanet M, Mozziconacci MJ, Popovici C, Conte N, Fernandez F, Sobol H, Jacquemier J, Pebusque M, Ron D, et al.: Translocation and coamplification of loci from chromosome arms 8p and 11q in the MDA-MB-175 mammary carcinoma cell line. Int J Oncol. 2000, 16: 683-688.PubMed Adelaide J, Chaffanet M, Mozziconacci MJ, Popovici C, Conte N, Fernandez F, Sobol H, Jacquemier J, Pebusque M, Ron D, et al.: Translocation and coamplification of loci from chromosome arms 8p and 11q in the MDA-MB-175 mammary carcinoma cell line. Int J Oncol. 2000, 16: 683-688.PubMed
23.
go back to reference Jacquemier J, Adelaide J, Parc P, Penault-Llorca F, Planche J, deLapeyriere O, Birnbaum D: Expression of the FGFR1 gene in human breast-carcinoma cells. Int J Cancer. 1994, 59: 373-378. 10.1002/ijc.2910590314.CrossRefPubMed Jacquemier J, Adelaide J, Parc P, Penault-Llorca F, Planche J, deLapeyriere O, Birnbaum D: Expression of the FGFR1 gene in human breast-carcinoma cells. Int J Cancer. 1994, 59: 373-378. 10.1002/ijc.2910590314.CrossRefPubMed
24.
go back to reference Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, Ellis IO, Reis-Filho JS: FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007, 9: R23-10.1186/bcr1665.PubMedCentralCrossRefPubMed Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, Ellis IO, Reis-Filho JS: FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007, 9: R23-10.1186/bcr1665.PubMedCentralCrossRefPubMed
25.
go back to reference Ugolini F, Adelaide J, Charafe-Jauffret E, Nguyen C, Jacquemier J, Jordan B, Birnbaum D, Pebusque MJ: Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene. 1999, 18: 1903-1910. 10.1038/sj.onc.1202739.CrossRefPubMed Ugolini F, Adelaide J, Charafe-Jauffret E, Nguyen C, Jacquemier J, Jordan B, Birnbaum D, Pebusque MJ: Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene. 1999, 18: 1903-1910. 10.1038/sj.onc.1202739.CrossRefPubMed
26.
go back to reference Tenhagen M, van Diest PJ, Ivanova IA, van der Wall E, van der Groep P: Fibroblast growth factor receptors in breast cancer: expression, downstream effects, and possible drug targets. Endocr Relat Cancer. 2012, 19: R115-29. 10.1530/ERC-12-0060.CrossRefPubMed Tenhagen M, van Diest PJ, Ivanova IA, van der Wall E, van der Groep P: Fibroblast growth factor receptors in breast cancer: expression, downstream effects, and possible drug targets. Endocr Relat Cancer. 2012, 19: R115-29. 10.1530/ERC-12-0060.CrossRefPubMed
27.
go back to reference Xian W, Pappas L, Pandya D, Selfors LM, Derksen PW, de Bruin M, Gray NS, Jonkers J, Rosen JM, Brugge JS: Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res. 2009, 69: 2244-2251. 10.1158/0008-5472.CAN-08-3398.CrossRefPubMed Xian W, Pappas L, Pandya D, Selfors LM, Derksen PW, de Bruin M, Gray NS, Jonkers J, Rosen JM, Brugge JS: Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res. 2009, 69: 2244-2251. 10.1158/0008-5472.CAN-08-3398.CrossRefPubMed
28.
go back to reference Gavine PR, Mooney L, Kilgour E, Thomas AP, Al-Kadhimi K, Beck S, Rooney C, Coleman T, Baker D, Mellor MJ, Brooks AN, Klinowska T: AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012, 72: 2045-2056. 10.1158/0008-5472.CAN-11-3034.CrossRefPubMed Gavine PR, Mooney L, Kilgour E, Thomas AP, Al-Kadhimi K, Beck S, Rooney C, Coleman T, Baker D, Mellor MJ, Brooks AN, Klinowska T: AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012, 72: 2045-2056. 10.1158/0008-5472.CAN-11-3034.CrossRefPubMed
29.
go back to reference Shiang CY, Qi Y, Wang B, Lazar V, Wang J, Fraser Symmans W, Hortobagyi GN, Andre F, Pusztai L: Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast Cancer Res Treat. 2010, 123: 747-755. 10.1007/s10549-009-0677-6.CrossRefPubMed Shiang CY, Qi Y, Wang B, Lazar V, Wang J, Fraser Symmans W, Hortobagyi GN, Andre F, Pusztai L: Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast Cancer Res Treat. 2010, 123: 747-755. 10.1007/s10549-009-0677-6.CrossRefPubMed
30.
go back to reference Gru AA, Allred DC: FGFR1 amplification and the progression of non-invasive to invasive breast cancer. Breast Cancer Res. 2012, 14: 116-10.1186/bcr3340.PubMedCentralCrossRefPubMed Gru AA, Allred DC: FGFR1 amplification and the progression of non-invasive to invasive breast cancer. Breast Cancer Res. 2012, 14: 116-10.1186/bcr3340.PubMedCentralCrossRefPubMed
31.
go back to reference Balko JM, Mayer IA, Sanders ME, Miller TW, Kuba MG, Meszoely IM, Wagle N, Garraway LA, Arteaga CL: Discordant cellular response to presurgical letrozole in bilateral synchronous ER + breast cancers with a KRAS mutation or FGFR1 gene amplification. Mol Cancer Ther. 2012, 11: 2301-2305. 10.1158/1535-7163.MCT-12-0511.PubMedCentralCrossRefPubMed Balko JM, Mayer IA, Sanders ME, Miller TW, Kuba MG, Meszoely IM, Wagle N, Garraway LA, Arteaga CL: Discordant cellular response to presurgical letrozole in bilateral synchronous ER + breast cancers with a KRAS mutation or FGFR1 gene amplification. Mol Cancer Ther. 2012, 11: 2301-2305. 10.1158/1535-7163.MCT-12-0511.PubMedCentralCrossRefPubMed
32.
go back to reference Jang MH, Kim EJ, Choi Y, Lee HE, Kim YJ, Kim JH, Kang E, Kim SW, Kim IA, Park SY: FGFR1 is amplified during the progression of in situ to invasive breast carcinoma. Breast Cancer Res. 2012, 14: R115-10.1186/bcr3239.PubMedCentralCrossRefPubMed Jang MH, Kim EJ, Choi Y, Lee HE, Kim YJ, Kim JH, Kang E, Kim SW, Kim IA, Park SY: FGFR1 is amplified during the progression of in situ to invasive breast carcinoma. Breast Cancer Res. 2012, 14: R115-10.1186/bcr3239.PubMedCentralCrossRefPubMed
33.
go back to reference Moelans CB, de Wegers RA, Monsuurs HN, Maess AH, van Diest PJ: Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Cell Oncol (Dordr). 2011, 34: 475-482.CrossRef Moelans CB, de Wegers RA, Monsuurs HN, Maess AH, van Diest PJ: Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Cell Oncol (Dordr). 2011, 34: 475-482.CrossRef
Metadata
Title
FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma
Authors
Eleonora Brunello
Matteo Brunelli
Giuseppe Bogina
Anna Caliò
Erminia Manfrin
Alessia Nottegar
Marco Vergine
Annamaria Molino
Emilio Bria
Francesco Massari
Giampaolo Tortora
Sara Cingarlini
Serena Pedron
Marco Chilosi
Giuseppe Zamboni
Keith Miller
Guido Martignoni
Franco Bonetti
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-103

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine