Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2013

Open Access 01-12-2013 | Review

HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs?

Authors: Claudia Simões-Pires, Vincent Zwick, Alessandra Nurisso, Esther Schenker, Pierre-Alain Carrupt, Muriel Cuendet

Published in: Molecular Neurodegeneration | Issue 1/2013

Login to get access

Abstract

Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs, especially those from class I, via chromatin deacetylation. However, other mechanisms may contribute to the neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial. Specific inhibitors exert neuroprotection by increasing the acetylation levels of α-tubulin with subsequent improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand, an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize various neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Hutington’s diseases. This review describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding the modulation of HDAC6 activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Xu WS, Parmigiani RB, Marks PA: Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007, 26: 5541-5552. 10.1038/sj.onc.1210620.PubMed Xu WS, Parmigiani RB, Marks PA: Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007, 26: 5541-5552. 10.1038/sj.onc.1210620.PubMed
2.
go back to reference Walkinshaw DR, Tahmasebi S, Bertos NR, Yang XJ: Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem. 2008, 104: 1541-1552. 10.1002/jcb.21746.PubMed Walkinshaw DR, Tahmasebi S, Bertos NR, Yang XJ: Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem. 2008, 104: 1541-1552. 10.1002/jcb.21746.PubMed
3.
go back to reference Lahm A, Paolini C, Pallaoro M, Nardi M, Jones P, Neddermann P, Sambucini S, Bottomley M, Lo Surdo P, Carfi A, et al: Unraveling the hidden catalytic activity of vertebrate class Ila histone deacetylases. Proc Natl Acad Sci USA. 2007, 104: 17335-17340. 10.1073/pnas.0706487104.PubMedCentralPubMed Lahm A, Paolini C, Pallaoro M, Nardi M, Jones P, Neddermann P, Sambucini S, Bottomley M, Lo Surdo P, Carfi A, et al: Unraveling the hidden catalytic activity of vertebrate class Ila histone deacetylases. Proc Natl Acad Sci USA. 2007, 104: 17335-17340. 10.1073/pnas.0706487104.PubMedCentralPubMed
4.
go back to reference Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, et al: HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007, 21: 2172-2181. 10.1101/gad.436407.PubMedCentralPubMed Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, et al: HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007, 21: 2172-2181. 10.1101/gad.436407.PubMedCentralPubMed
5.
go back to reference Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009, 10: 32-42. 10.1038/nrg2485.PubMedCentralPubMed Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009, 10: 32-42. 10.1038/nrg2485.PubMedCentralPubMed
6.
go back to reference Dietz KC, Casaccia P: HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res. 2010, 62: 11-17. 10.1016/j.phrs.2010.01.011.PubMedCentralPubMed Dietz KC, Casaccia P: HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res. 2010, 62: 11-17. 10.1016/j.phrs.2010.01.011.PubMedCentralPubMed
7.
go back to reference Dokmanovic M, Clarke C, Marks PA: Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007, 5: 981-989. 10.1158/1541-7786.MCR-07-0324.PubMed Dokmanovic M, Clarke C, Marks PA: Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007, 5: 981-989. 10.1158/1541-7786.MCR-07-0324.PubMed
8.
go back to reference De Ruijter AJM, van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003, 370: 737-749. 10.1042/BJ20021321.PubMedCentralPubMed De Ruijter AJM, van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003, 370: 737-749. 10.1042/BJ20021321.PubMedCentralPubMed
9.
go back to reference Fischer A, Sananbenesi F, Mungenast A, Tsai LH: Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci. 2010, 31: 605-617. 10.1016/j.tips.2010.09.003.PubMed Fischer A, Sananbenesi F, Mungenast A, Tsai LH: Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci. 2010, 31: 605-617. 10.1016/j.tips.2010.09.003.PubMed
10.
go back to reference Mai A, Massa S, Pezzi R, Simeoni S, Rotili D, Nebbioso A, Scognamiglio A, Altucci L, Loidl P, Brosch G: Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Assoc Thai. 2005, 48: 3344-3353. Mai A, Massa S, Pezzi R, Simeoni S, Rotili D, Nebbioso A, Scognamiglio A, Altucci L, Loidl P, Brosch G: Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Assoc Thai. 2005, 48: 3344-3353.
11.
go back to reference Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ: Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosc. 2007, 31: 47-58. 10.1007/BF02686117. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ: Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosc. 2007, 31: 47-58. 10.1007/BF02686117.
12.
go back to reference Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D: Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001, 11: 162-166. 10.1016/S0959-437X(00)00174-X.PubMed Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D: Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001, 11: 162-166. 10.1016/S0959-437X(00)00174-X.PubMed
13.
go back to reference Gao L, Cueto MA, Asselbergs F, Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002, 277: 25748-25755. 10.1074/jbc.M111871200.PubMed Gao L, Cueto MA, Asselbergs F, Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002, 277: 25748-25755. 10.1074/jbc.M111871200.PubMed
14.
go back to reference Saha RN, Pahan K: HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2005, 13: 539-550. Saha RN, Pahan K: HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2005, 13: 539-550.
15.
go back to reference Selvi BR, Cassel JC, Kundu TK, Boutillier AL: Tuning acetylation levels with HAT activators: therapeutic strategy in neurodegenerative diseases. Biochim Biophys Acta. 2010, 1799: 840-853. 10.1016/j.bbagrm.2010.08.012.PubMed Selvi BR, Cassel JC, Kundu TK, Boutillier AL: Tuning acetylation levels with HAT activators: therapeutic strategy in neurodegenerative diseases. Biochim Biophys Acta. 2010, 1799: 840-853. 10.1016/j.bbagrm.2010.08.012.PubMed
16.
go back to reference Sleiman SF, Basso M, Mahishi L, Kozikowski AP, Donohoe ME, Langley B, Ratan RR: Putting the “HATI” back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Inv Drugs. 2009, 18: 573-584. 10.1517/13543780902810345. Sleiman SF, Basso M, Mahishi L, Kozikowski AP, Donohoe ME, Langley B, Ratan RR: Putting the “HATI” back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Inv Drugs. 2009, 18: 573-584. 10.1517/13543780902810345.
17.
go back to reference Gray S: Targeting Huntington’s disease through histone deacetylases. Clin Epigen. 2011, 2: 257-277. 10.1007/s13148-011-0025-7. Gray S: Targeting Huntington’s disease through histone deacetylases. Clin Epigen. 2011, 2: 257-277. 10.1007/s13148-011-0025-7.
18.
go back to reference Tang H, Wang XS, Huang XP, Roth BL, Butler KV, Kozikowski AP, Jung M, Tropsha A: Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model. 2009, 49: 461-476. 10.1021/ci800366f.PubMed Tang H, Wang XS, Huang XP, Roth BL, Butler KV, Kozikowski AP, Jung M, Tropsha A: Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model. 2009, 49: 461-476. 10.1021/ci800366f.PubMed
19.
go back to reference Li G, Jiang H, Chang M, Xie H, Hu L: HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci. 2011, 304: 1-8. 10.1016/j.jns.2011.02.017.PubMed Li G, Jiang H, Chang M, Xie H, Hu L: HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci. 2011, 304: 1-8. 10.1016/j.jns.2011.02.017.PubMed
20.
go back to reference Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999, 401: 188-193. 10.1038/43710.PubMed Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999, 401: 188-193. 10.1038/43710.PubMed
21.
go back to reference Wang DF, Helquist P, Wiech NL, Wiest O: Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases. J Med Chem. 2005, 48: 6936-6947. 10.1021/jm0505011.PubMed Wang DF, Helquist P, Wiech NL, Wiest O: Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases. J Med Chem. 2005, 48: 6936-6947. 10.1021/jm0505011.PubMed
22.
go back to reference Wang D: Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr Topics Med Chem. 2009, 9: 241-256. 10.2174/156802609788085287. Wang D: Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr Topics Med Chem. 2009, 9: 241-256. 10.2174/156802609788085287.
23.
go back to reference Vannini A, Volpari C, Di Marco S: Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem. 2004, 279: 24291-24296. 10.1074/jbc.M401855200.PubMed Vannini A, Volpari C, Di Marco S: Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem. 2004, 279: 24291-24296. 10.1074/jbc.M401855200.PubMed
24.
go back to reference Khan SN, Khan AU: Role of histone acetylation in cell physiology and diseases: an update. Clin Chim Acta. 2010, 411: 1401-1411. 10.1016/j.cca.2010.06.020.PubMed Khan SN, Khan AU: Role of histone acetylation in cell physiology and diseases: an update. Clin Chim Acta. 2010, 411: 1401-1411. 10.1016/j.cca.2010.06.020.PubMed
25.
go back to reference Gregoretti IV, Lee YM, Goodson HV: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004, 338: 17-31. 10.1016/j.jmb.2004.02.006.PubMed Gregoretti IV, Lee YM, Goodson HV: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004, 338: 17-31. 10.1016/j.jmb.2004.02.006.PubMed
26.
go back to reference Bertrand P: Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010, 45: 2095-2116. 10.1016/j.ejmech.2010.02.030.PubMed Bertrand P: Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010, 45: 2095-2116. 10.1016/j.ejmech.2010.02.030.PubMed
27.
go back to reference Witt O, Deubzer HE, Milde T, Oehme I: HDAC family: what are the cancer relevant targets?. Cancer Lett. 2009, 277: 8-21. 10.1016/j.canlet.2008.08.016.PubMed Witt O, Deubzer HE, Milde T, Oehme I: HDAC family: what are the cancer relevant targets?. Cancer Lett. 2009, 277: 8-21. 10.1016/j.canlet.2008.08.016.PubMed
28.
go back to reference Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski NP, Lewis TA, Maglathin RL, et al: Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem. 2008, 283: 11355-11363. 10.1074/jbc.M707362200.PubMedCentralPubMed Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski NP, Lewis TA, Maglathin RL, et al: Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem. 2008, 283: 11355-11363. 10.1074/jbc.M707362200.PubMedCentralPubMed
29.
go back to reference Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, MacKenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG: Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem. 2012, 287: 2317-2327. 10.1074/jbc.M111.273730.PubMedCentralPubMed Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, MacKenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG: Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem. 2012, 287: 2317-2327. 10.1074/jbc.M111.273730.PubMedCentralPubMed
30.
go back to reference Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, et al: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003, 23: 9418-9427.PubMed Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, et al: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003, 23: 9418-9427.PubMed
31.
go back to reference Bertos NR, Gilquin B, Chan GKT, Yen TJ, Khochbin S, Yang XJ: Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J Biol Chem. 2004, 279: 48246-48254. 10.1074/jbc.M408583200.PubMed Bertos NR, Gilquin B, Chan GKT, Yen TJ, Khochbin S, Yang XJ: Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J Biol Chem. 2004, 279: 48246-48254. 10.1074/jbc.M408583200.PubMed
32.
go back to reference Ding H, Dolan PJ, Johnson GVW: Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem. 2008, 106: 2119-2130. 10.1111/j.1471-4159.2008.05564.x.PubMedCentralPubMed Ding H, Dolan PJ, Johnson GVW: Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem. 2008, 106: 2119-2130. 10.1111/j.1471-4159.2008.05564.x.PubMedCentralPubMed
33.
go back to reference Hook SS, Orian A, Cowley SM, Eisenman RN: Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci USA. 2002, 99: 13425-13430. 10.1073/pnas.172511699.PubMedCentralPubMed Hook SS, Orian A, Cowley SM, Eisenman RN: Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci USA. 2002, 99: 13425-13430. 10.1073/pnas.172511699.PubMedCentralPubMed
34.
go back to reference Pai MT, Tzeng SR, Kovacs JJ, Keaton MA, Li SSC, Yao TP, Zhou P: Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin. J Mol Biol. 2007, 370: 290-302. 10.1016/j.jmb.2007.04.015.PubMedCentralPubMed Pai MT, Tzeng SR, Kovacs JJ, Keaton MA, Li SSC, Yao TP, Zhou P: Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin. J Mol Biol. 2007, 370: 290-302. 10.1016/j.jmb.2007.04.015.PubMedCentralPubMed
35.
go back to reference Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD: The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell. 2006, 124: 1197-1208. 10.1016/j.cell.2006.02.038.PubMed Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD: The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell. 2006, 124: 1197-1208. 10.1016/j.cell.2006.02.038.PubMed
36.
go back to reference Zhang L, Fang H, Xu W: Strategies in developing promising histone deacetylase inhibitors. Med Res Rev. 2010, 30: 585-602. 10.1002/med.20169.PubMed Zhang L, Fang H, Xu W: Strategies in developing promising histone deacetylase inhibitors. Med Res Rev. 2010, 30: 585-602. 10.1002/med.20169.PubMed
37.
go back to reference Estiu G, Greenberg E, Harrison CB, Kwiatkowski NP, Mazitschek R, Bradner JE, Wiest O: Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J Med Chem. 2008, 51: 2898-2906. 10.1021/jm7015254.PubMed Estiu G, Greenberg E, Harrison CB, Kwiatkowski NP, Mazitschek R, Bradner JE, Wiest O: Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J Med Chem. 2008, 51: 2898-2906. 10.1021/jm7015254.PubMed
38.
go back to reference Charrier C, Clarhaut J, Gesson JP, Estiu G, Wiest O, Roche J, Bertrand P: Synthesis and modeling of new benzofuranone histone deacetylase inhibitors that stimulate tumor suppressor gene expression. J Med Chem. 2009, 52: 3112-3115. 10.1021/jm9002439.PubMed Charrier C, Clarhaut J, Gesson JP, Estiu G, Wiest O, Roche J, Bertrand P: Synthesis and modeling of new benzofuranone histone deacetylase inhibitors that stimulate tumor suppressor gene expression. J Med Chem. 2009, 52: 3112-3115. 10.1021/jm9002439.PubMed
39.
go back to reference Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD: Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J Med Chem. 2008, 51: 4370-4373. 10.1021/jm8002894.PubMedCentralPubMed Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD: Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J Med Chem. 2008, 51: 4370-4373. 10.1021/jm8002894.PubMedCentralPubMed
40.
go back to reference Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP: Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc. 2010, 132: 10842-10846. 10.1021/ja102758v.PubMedCentralPubMed Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP: Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc. 2010, 132: 10842-10846. 10.1021/ja102758v.PubMedCentralPubMed
41.
go back to reference Schäfer S, Saunders L, Schlimme S, Valkov V, Wagner J, Kratz F, Sippl W, Verdin E, Jung M: Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. Chem Med Chem. 2009, 4: 283-290.PubMed Schäfer S, Saunders L, Schlimme S, Valkov V, Wagner J, Kratz F, Sippl W, Verdin E, Jung M: Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. Chem Med Chem. 2009, 4: 283-290.PubMed
42.
go back to reference Kong Y, Jung M, Wang K, Grindrod S, Velena A, Lee SA, Dakshanamurthy S, Yang Y, Miessau M, Zheng C, et al: Histone deacetylase cytoplasmic trapping by a novel fluorescent HDAC inhibitor. Mol Cancer Ther. 2011, 10: 1591-1599. 10.1158/1535-7163.MCT-10-0779.PubMedCentralPubMed Kong Y, Jung M, Wang K, Grindrod S, Velena A, Lee SA, Dakshanamurthy S, Yang Y, Miessau M, Zheng C, et al: Histone deacetylase cytoplasmic trapping by a novel fluorescent HDAC inhibitor. Mol Cancer Ther. 2011, 10: 1591-1599. 10.1158/1535-7163.MCT-10-0779.PubMedCentralPubMed
43.
go back to reference Schlimme S, Hauser AT, Carafa V, Heinke R, Kannan S, Stolfa DA, Cellamare S, Carotti A, Altucci L, Jung M, et al: Carbamate prodrug concept for hydroxamate HDAC inhibitors. Chem Med Chem. 2011, 6: 1193-1198.PubMed Schlimme S, Hauser AT, Carafa V, Heinke R, Kannan S, Stolfa DA, Cellamare S, Carotti A, Altucci L, Jung M, et al: Carbamate prodrug concept for hydroxamate HDAC inhibitors. Chem Med Chem. 2011, 6: 1193-1198.PubMed
44.
go back to reference Schäfer S, Saunders L, Eliseeva E, Velena A, Jung M, Schwienhorst A, Strasser A, Dickmanns A, Ficner R, Schlimme S, et al: Phenylalanine-containing hydroxamic acids as selective inhibitors of class IIb histone deacetylases (HDACs). Bioorg Med Chem. 2008, 16: 2011-2033. 10.1016/j.bmc.2007.10.092.PubMed Schäfer S, Saunders L, Eliseeva E, Velena A, Jung M, Schwienhorst A, Strasser A, Dickmanns A, Ficner R, Schlimme S, et al: Phenylalanine-containing hydroxamic acids as selective inhibitors of class IIb histone deacetylases (HDACs). Bioorg Med Chem. 2008, 16: 2011-2033. 10.1016/j.bmc.2007.10.092.PubMed
45.
go back to reference Zou H, Wu Y, Navre M, Sang BC: Characterization of the two catalytic domains in histone deacetylase 6. Biochem Biophys Res Commun. 2006, 341: 45-50. 10.1016/j.bbrc.2005.12.144.PubMed Zou H, Wu Y, Navre M, Sang BC: Characterization of the two catalytic domains in histone deacetylase 6. Biochem Biophys Res Commun. 2006, 341: 45-50. 10.1016/j.bbrc.2005.12.144.PubMed
46.
go back to reference Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, et al: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci. 2007, 27: 6128-6140. 10.1523/JNEUROSCI.0296-07.2007.PubMedCentralPubMed Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, et al: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci. 2007, 27: 6128-6140. 10.1523/JNEUROSCI.0296-07.2007.PubMedCentralPubMed
47.
go back to reference Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH: Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007, 447: 178-182. 10.1038/nature05772.PubMed Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH: Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007, 447: 178-182. 10.1038/nature05772.PubMed
48.
go back to reference Nithianantharajah J, Hannan AJ: Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006, 7: 697-709. 10.1038/nrn1970.PubMed Nithianantharajah J, Hannan AJ: Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006, 7: 697-709. 10.1038/nrn1970.PubMed
49.
go back to reference Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, et al: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010, 328: 753-756. 10.1126/science.1186088.PubMed Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, et al: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010, 328: 753-756. 10.1126/science.1186088.PubMed
50.
go back to reference Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999, 402: 615-622. 10.1038/45159.PubMed Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999, 402: 615-622. 10.1038/45159.PubMed
51.
go back to reference Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, et al: Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron. 2008, 60: 803-817. 10.1016/j.neuron.2008.10.015.PubMedCentralPubMed Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, et al: Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron. 2008, 60: 803-817. 10.1016/j.neuron.2008.10.015.PubMedCentralPubMed
52.
go back to reference Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, et al: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009, 459: 55-60. 10.1038/nature07925.PubMedCentralPubMed Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, et al: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009, 459: 55-60. 10.1038/nature07925.PubMedCentralPubMed
53.
go back to reference Hawk JD, Florian C, Abel T: Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn Mem. 2011, 18: 367-370. 10.1101/lm.2097411.PubMedCentralPubMed Hawk JD, Florian C, Abel T: Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn Mem. 2011, 18: 367-370. 10.1101/lm.2097411.PubMedCentralPubMed
54.
go back to reference McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, et al: HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci. 2011, 31: 764-774. 10.1523/JNEUROSCI.5052-10.2011.PubMedCentralPubMed McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, et al: HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci. 2011, 31: 764-774. 10.1523/JNEUROSCI.5052-10.2011.PubMedCentralPubMed
55.
go back to reference Bardai FH, D’Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci. 2011, 31: 1746-1751. 10.1523/JNEUROSCI.5704-10.2011.PubMedCentralPubMed Bardai FH, D’Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci. 2011, 31: 1746-1751. 10.1523/JNEUROSCI.5704-10.2011.PubMedCentralPubMed
56.
go back to reference Yang XJ, Grégoire S: Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol. 2005, 25: 2873-2884. 10.1128/MCB.25.8.2873-2884.2005.PubMedCentralPubMed Yang XJ, Grégoire S: Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol. 2005, 25: 2873-2884. 10.1128/MCB.25.8.2873-2884.2005.PubMedCentralPubMed
57.
go back to reference Bolger TA, Yao TP: Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 2005, 25: 9544-9553. 10.1523/JNEUROSCI.1826-05.2005.PubMed Bolger TA, Yao TP: Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 2005, 25: 9544-9553. 10.1523/JNEUROSCI.1826-05.2005.PubMed
58.
go back to reference Chen B, Cepko CL: HDAC4 regulates neuronal survival in normal and diseased retinas. Science. 2009, 323: 256-259. 10.1126/science.1166226.PubMedCentralPubMed Chen B, Cepko CL: HDAC4 regulates neuronal survival in normal and diseased retinas. Science. 2009, 323: 256-259. 10.1126/science.1166226.PubMedCentralPubMed
59.
go back to reference Wang WH, Cheng LC, Pan FY, Xue B, Wang DY, Chen Z, Li CJ: Intracellular trafficking of histone deacetylase 4 regulates long-term memory formation. Anatom Rec. 2011, 294: 1025-1034. 10.1002/ar.21389. Wang WH, Cheng LC, Pan FY, Xue B, Wang DY, Chen Z, Li CJ: Intracellular trafficking of histone deacetylase 4 regulates long-term memory formation. Anatom Rec. 2011, 294: 1025-1034. 10.1002/ar.21389.
60.
go back to reference Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM: Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci. 2009, 29: 8288-8297. 10.1523/JNEUROSCI.0097-09.2009.PubMedCentralPubMed Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM: Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci. 2009, 29: 8288-8297. 10.1523/JNEUROSCI.0097-09.2009.PubMedCentralPubMed
61.
go back to reference Kim JY, Casaccia P: HDAC1 in axonal degeneration: a matter of subcellular localization. Cell Cycle. 2010, 9: 3680-3684.PubMedCentralPubMed Kim JY, Casaccia P: HDAC1 in axonal degeneration: a matter of subcellular localization. Cell Cycle. 2010, 9: 3680-3684.PubMedCentralPubMed
62.
go back to reference Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008, 409: 581-589. 10.1042/BJ20070779.PubMed Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008, 409: 581-589. 10.1042/BJ20070779.PubMed
63.
go back to reference Jiang Q, Ren Y, Feng J: Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci. 2008, 28: 12993-13002. 10.1523/JNEUROSCI.2860-08.2008.PubMedCentralPubMed Jiang Q, Ren Y, Feng J: Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci. 2008, 28: 12993-13002. 10.1523/JNEUROSCI.2860-08.2008.PubMedCentralPubMed
64.
go back to reference Su M, Shi JJ, Yang YP, Li J, Zhang YL, Chen J, Hu LF, Liu CF: HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress. J Neurochem. 2011, 117: 112-120. 10.1111/j.1471-4159.2011.07180.x.PubMed Su M, Shi JJ, Yang YP, Li J, Zhang YL, Chen J, Hu LF, Liu CF: HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress. J Neurochem. 2011, 117: 112-120. 10.1111/j.1471-4159.2011.07180.x.PubMed
65.
go back to reference Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F: Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci. 2007, 27: 3571-3583. 10.1523/JNEUROSCI.0037-07.2007.PubMed Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F: Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci. 2007, 27: 3571-3583. 10.1523/JNEUROSCI.0037-07.2007.PubMed
66.
go back to reference Iwata A, Riley BE, Johnston JA, Kopito RR: HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005, 280: 40282-40292. 10.1074/jbc.M508786200.PubMed Iwata A, Riley BE, Johnston JA, Kopito RR: HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005, 280: 40282-40292. 10.1074/jbc.M508786200.PubMed
67.
go back to reference Parmigiani R, Xu W, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P, Marks P: HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci USA. 2008, 105: 9633-9638. 10.1073/pnas.0803749105.PubMedCentralPubMed Parmigiani R, Xu W, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P, Marks P: HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci USA. 2008, 105: 9633-9638. 10.1073/pnas.0803749105.PubMedCentralPubMed
68.
go back to reference Chen S, Owens GC, Makarenkova H, Edelman DB: HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010, 5: e10848-10.1371/journal.pone.0010848.PubMedCentralPubMed Chen S, Owens GC, Makarenkova H, Edelman DB: HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010, 5: e10848-10.1371/journal.pone.0010848.PubMedCentralPubMed
69.
go back to reference Kozikowski AP, Chen Y, Gaysin A, Chen B, D’Annibale MA, Suto CM, Langley BC: Functional differences in epigenetic modulators - superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem. 2007, 50: 3054-3061. 10.1021/jm070178x.PubMed Kozikowski AP, Chen Y, Gaysin A, Chen B, D’Annibale MA, Suto CM, Langley BC: Functional differences in epigenetic modulators - superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem. 2007, 50: 3054-3061. 10.1021/jm070178x.PubMed
70.
go back to reference Heltweg B, Dequiedt F, Marshall BL, Brauch C, Yoshida M, Nishino N, Verdin E, Jung M: Subtype selective substrates for histone deacetylases. J Med Chem. 2004, 47: 5235-5243. 10.1021/jm0497592.PubMed Heltweg B, Dequiedt F, Marshall BL, Brauch C, Yoshida M, Nishino N, Verdin E, Jung M: Subtype selective substrates for histone deacetylases. J Med Chem. 2004, 47: 5235-5243. 10.1021/jm0497592.PubMed
71.
go back to reference Nuutinen T, Suuronen T, Kyrylenko S, Huuskonen J, Salminen A: Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int. 2005, 47: 528-538. 10.1016/j.neuint.2005.07.007.PubMed Nuutinen T, Suuronen T, Kyrylenko S, Huuskonen J, Salminen A: Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int. 2005, 47: 528-538. 10.1016/j.neuint.2005.07.007.PubMed
72.
go back to reference Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002, 295: 1852-1858. 10.1126/science.1068408.PubMed Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002, 295: 1852-1858. 10.1126/science.1068408.PubMed
73.
go back to reference Wong E, Cuervo AM: Autophagy gone away in neurodegenerative diseases. Nat Neurosci. 2010, 13: 805-811. 10.1038/nn.2575.PubMedCentralPubMed Wong E, Cuervo AM: Autophagy gone away in neurodegenerative diseases. Nat Neurosci. 2010, 13: 805-811. 10.1038/nn.2575.PubMedCentralPubMed
74.
go back to reference Ciechanover A, Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron. 2003, 40: 427-446. 10.1016/S0896-6273(03)00606-8.PubMed Ciechanover A, Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron. 2003, 40: 427-446. 10.1016/S0896-6273(03)00606-8.PubMed
75.
go back to reference Wyttenbach A, Arrigo AP: The role of heat shock proteins during neurodegeneration in Alzheimer’s, Parkinson’s and Huntington’s disease. Heat Shock Proteins in Neural Cells. Edited by: Richter-Landsberg C. 2006, Landes Bioscience, Austin Wyttenbach A, Arrigo AP: The role of heat shock proteins during neurodegeneration in Alzheimer’s, Parkinson’s and Huntington’s disease. Heat Shock Proteins in Neural Cells. Edited by: Richter-Landsberg C. 2006, Landes Bioscience, Austin
76.
go back to reference Adams J: The proteasome: a suitable antineoplastic target. Nat Rev Canc. 2004, 4: 349-360. 10.1038/nrc1361. Adams J: The proteasome: a suitable antineoplastic target. Nat Rev Canc. 2004, 4: 349-360. 10.1038/nrc1361.
77.
go back to reference Ande SR, Chen J, Maddika S: The ubiquitin pathway: an emerging drug target in cancer therapy. Eur J Pharmacol. 2009, 625: 199-205. 10.1016/j.ejphar.2009.08.042.PubMed Ande SR, Chen J, Maddika S: The ubiquitin pathway: an emerging drug target in cancer therapy. Eur J Pharmacol. 2009, 625: 199-205. 10.1016/j.ejphar.2009.08.042.PubMed
78.
go back to reference Bennett EJ, Bence NF, Jayakumar R, Kopito RR: Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell. 2005, 17: 351-365. 10.1016/j.molcel.2004.12.021.PubMed Bennett EJ, Bence NF, Jayakumar R, Kopito RR: Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell. 2005, 17: 351-365. 10.1016/j.molcel.2004.12.021.PubMed
79.
go back to reference Taylor JP, Hardy J, Fischbeck KH: Toxic proteins in neurodegenerative disease. Science. 2002, 296: 1991-1995. 10.1126/science.1067122.PubMed Taylor JP, Hardy J, Fischbeck KH: Toxic proteins in neurodegenerative disease. Science. 2002, 296: 1991-1995. 10.1126/science.1067122.PubMed
80.
go back to reference Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ: Ubiquitin is a common factor in intermediate filament inclusion-bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibers in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver-disease. J Pathol. 1988, 155: 9-15. 10.1002/path.1711550105.PubMed Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ: Ubiquitin is a common factor in intermediate filament inclusion-bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibers in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver-disease. J Pathol. 1988, 155: 9-15. 10.1002/path.1711550105.PubMed
81.
go back to reference Dickson DW, Schmidt ML, Lee VMY, Zhao ML, Yen SH, Trojanowski JQ: Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathol. 1994, 87: 269-276. 10.1007/BF00296742.PubMed Dickson DW, Schmidt ML, Lee VMY, Zhao ML, Yen SH, Trojanowski JQ: Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathol. 1994, 87: 269-276. 10.1007/BF00296742.PubMed
82.
go back to reference Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP: Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997, 90: 537-548. 10.1016/S0092-8674(00)80513-9.PubMed Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP: Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997, 90: 537-548. 10.1016/S0092-8674(00)80513-9.PubMed
83.
go back to reference Perry G, Friedman R, Shaw G, Chau V: Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA. 1987, 84: 3033-3036. 10.1073/pnas.84.9.3033.PubMedCentralPubMed Perry G, Friedman R, Shaw G, Chau V: Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA. 1987, 84: 3033-3036. 10.1073/pnas.84.9.3033.PubMedCentralPubMed
84.
go back to reference Lindersson E, Beedholm R, Hojrup P, Moos T, Gai WP, Hendil KB, Jensen PH: Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem. 2004, 279: 12924-12934.PubMed Lindersson E, Beedholm R, Hojrup P, Moos T, Gai WP, Hendil KB, Jensen PH: Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem. 2004, 279: 12924-12934.PubMed
85.
go back to reference Lim KL, Tan J: Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem. 2007, 8: S13-10.1186/1471-2091-8-S1-S13.PubMedCentralPubMed Lim KL, Tan J: Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem. 2007, 8: S13-10.1186/1471-2091-8-S1-S13.PubMedCentralPubMed
86.
go back to reference Bence NF, Sampat RM, Kopito RR: Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001, 292: 1552-1555. 10.1126/science.292.5521.1552.PubMed Bence NF, Sampat RM, Kopito RR: Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001, 292: 1552-1555. 10.1126/science.292.5521.1552.PubMed
87.
go back to reference Keck S, Nitsch R, Grune T, Ullrich O: Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem. 2003, 85: 115-122. 10.1046/j.1471-4159.2003.01642.x.PubMed Keck S, Nitsch R, Grune T, Ullrich O: Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem. 2003, 85: 115-122. 10.1046/j.1471-4159.2003.01642.x.PubMed
88.
go back to reference Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003, 115: 727-738. 10.1016/S0092-8674(03)00939-5.PubMed Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003, 115: 727-738. 10.1016/S0092-8674(03)00939-5.PubMed
89.
go back to reference Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S: Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol. 2001, 21: 8035-8044. 10.1128/MCB.21.23.8035-8044.2001.PubMedCentralPubMed Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S: Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol. 2001, 21: 8035-8044. 10.1128/MCB.21.23.8035-8044.2001.PubMedCentralPubMed
90.
go back to reference DeLaBarre B, Brunger AT: Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Mol Biol. 2003, 10: 856-863. 10.1038/nsb972. DeLaBarre B, Brunger AT: Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Mol Biol. 2003, 10: 856-863. 10.1038/nsb972.
91.
go back to reference Song C, Xiao Z, Nagashima K, Li CC, Lockett SJ, Dai RM, Cho EH, Conrads TP, Veenstra TD, Colburn NH, et al: The heavy metal cadmium induces valosin-containing protein (VCP)-mediated aggresome formation. Toxicol Appl Pharmacol. 2008, 228: 351-363. 10.1016/j.taap.2007.12.026.PubMedCentralPubMed Song C, Xiao Z, Nagashima K, Li CC, Lockett SJ, Dai RM, Cho EH, Conrads TP, Veenstra TD, Colburn NH, et al: The heavy metal cadmium induces valosin-containing protein (VCP)-mediated aggresome formation. Toxicol Appl Pharmacol. 2008, 228: 351-363. 10.1016/j.taap.2007.12.026.PubMedCentralPubMed
92.
go back to reference Boyault C, Gilquin B, Zhang Y, Rybin V, Garman E, Meyer-Klaucke W, Matthias P, Muller CW, Khochbin S: HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 2006, 25: 3357-3366. 10.1038/sj.emboj.7601210.PubMedCentralPubMed Boyault C, Gilquin B, Zhang Y, Rybin V, Garman E, Meyer-Klaucke W, Matthias P, Muller CW, Khochbin S: HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 2006, 25: 3357-3366. 10.1038/sj.emboj.7601210.PubMedCentralPubMed
93.
go back to reference Du G, Jiao R: To prevent neurodegeneration: HDAC6 uses different strategies for different challenges. Commun Integr Biol. 2011, 4: 139-142. 10.4161/cib.4.2.14272.PubMedCentralPubMed Du G, Jiao R: To prevent neurodegeneration: HDAC6 uses different strategies for different challenges. Commun Integr Biol. 2011, 4: 139-142. 10.4161/cib.4.2.14272.PubMedCentralPubMed
94.
go back to reference Kalveram B, Schmidtke G, Groettrup M: The ubiquitin-like modifier FAT10 interacts with HDAC6 and localizes to aggresomes under proteasome inhibition. J Cell Sci. 2008, 121: 4079-4088. 10.1242/jcs.035006.PubMed Kalveram B, Schmidtke G, Groettrup M: The ubiquitin-like modifier FAT10 interacts with HDAC6 and localizes to aggresomes under proteasome inhibition. J Cell Sci. 2008, 121: 4079-4088. 10.1242/jcs.035006.PubMed
95.
go back to reference Cook C, Gendron TF, Scheffel K, Carlomagno Y, Dunmore J, DeTure M, Petrucelli L: Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Human Mol Gen. 2012, 21: 2936-2945. 10.1093/hmg/dds125. Cook C, Gendron TF, Scheffel K, Carlomagno Y, Dunmore J, DeTure M, Petrucelli L: Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Human Mol Gen. 2012, 21: 2936-2945. 10.1093/hmg/dds125.
96.
go back to reference Rivieccio MA, Brochier C, Willis DE, Walker BA, D’Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, et al: HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA. 2009, 106: 19599-19604. 10.1073/pnas.0907935106.PubMedCentralPubMed Rivieccio MA, Brochier C, Willis DE, Walker BA, D’Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, et al: HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA. 2009, 106: 19599-19604. 10.1073/pnas.0907935106.PubMedCentralPubMed
97.
go back to reference Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007, 178: 1025-1038. 10.1083/jcb.200611128.PubMedCentralPubMed Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007, 178: 1025-1038. 10.1083/jcb.200611128.PubMedCentralPubMed
98.
go back to reference Salminen A, Tapiola T, Korhonen P, Suuronen T: Neuronal apoptosis induced by histone deacetylase inhibitors. Mol Brain Res. 1998, 61: 203-206. 10.1016/S0169-328X(98)00210-1.PubMed Salminen A, Tapiola T, Korhonen P, Suuronen T: Neuronal apoptosis induced by histone deacetylase inhibitors. Mol Brain Res. 1998, 61: 203-206. 10.1016/S0169-328X(98)00210-1.PubMed
99.
go back to reference Leroy K, Yilmaz Z, Brion JP: Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007, 33: 43-55.PubMed Leroy K, Yilmaz Z, Brion JP: Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007, 33: 43-55.PubMed
100.
go back to reference Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, Vanbelle G, Berg L: The Consortium to Establish a Registry for Alzheimers's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimers's disease. Neurology. 1991, 41: 479-486. 10.1212/WNL.41.4.479.PubMed Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, Vanbelle G, Berg L: The Consortium to Establish a Registry for Alzheimers's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimers's disease. Neurology. 1991, 41: 479-486. 10.1212/WNL.41.4.479.PubMed
101.
go back to reference Fortin NJ, Agster KL, Eichenbaum HB: Critical role of the hippocampus in memory for sequences of events. Nat Neurosci. 2002, 5: 458-462.PubMedCentralPubMed Fortin NJ, Agster KL, Eichenbaum HB: Critical role of the hippocampus in memory for sequences of events. Nat Neurosci. 2002, 5: 458-462.PubMedCentralPubMed
102.
go back to reference Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, Pasquier F, David JP: Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology. 2002, 59: 398-407. 10.1212/WNL.59.3.398.PubMed Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, Pasquier F, David JP: Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology. 2002, 59: 398-407. 10.1212/WNL.59.3.398.PubMed
103.
go back to reference Perez M, Santa-Maria I, De Barreda EG, Zhu X, Cuadros R, Cabrero JR, Sanchez-Madrid F, Dawson HN, Vitek MP, Perry G, et al: Tau - an inhibitor of deacetylase HDAC6 function. J Neurochem. 2009, 109: 1756-1766. 10.1111/j.1471-4159.2009.06102.x.PubMed Perez M, Santa-Maria I, De Barreda EG, Zhu X, Cuadros R, Cabrero JR, Sanchez-Madrid F, Dawson HN, Vitek MP, Perry G, et al: Tau - an inhibitor of deacetylase HDAC6 function. J Neurochem. 2009, 109: 1756-1766. 10.1111/j.1471-4159.2009.06102.x.PubMed
104.
go back to reference Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schlüter OM, Bradke F, Lu J, Fischer A: Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med. 2012, 5: 52-63.PubMedCentralPubMed Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schlüter OM, Bradke F, Lu J, Fischer A: Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med. 2012, 5: 52-63.PubMedCentralPubMed
105.
go back to reference Xu J, Kao SY, Lee FJS, Song WH, Jin LW, Yankner BA: Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 2002, 8: 600-606. 10.1038/nm0602-600.PubMed Xu J, Kao SY, Lee FJS, Song WH, Jin LW, Yankner BA: Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 2002, 8: 600-606. 10.1038/nm0602-600.PubMed
106.
go back to reference Zarow C, Lyness SA, Mortimer JA, Chui HC: Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003, 60: 337-341. 10.1001/archneur.60.3.337.PubMed Zarow C, Lyness SA, Mortimer JA, Chui HC: Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003, 60: 337-341. 10.1001/archneur.60.3.337.PubMed
107.
go back to reference Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ: A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002, 22: 3090-3099.PubMed Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ: A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002, 22: 3090-3099.PubMed
108.
go back to reference Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science. 2000, 287: 1265-1269. 10.1126/science.287.5456.1265.PubMed Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science. 2000, 287: 1265-1269. 10.1126/science.287.5456.1265.PubMed
109.
go back to reference Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al: α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006, 313: 324-328. 10.1126/science.1129462.PubMedCentralPubMed Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al: α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006, 313: 324-328. 10.1126/science.1129462.PubMedCentralPubMed
110.
go back to reference Du G, Liu X, Chen X, Song M, Yan Y, Jiao R, Wang C: Drosophila histone deacetylase 6 protects dopaminergic neurons against α-synuclein toxicity by promoting inclusion formation. Mol Biol Cell. 2010, 21: 2128-2137. 10.1091/mbc.E10-03-0200.PubMedCentralPubMed Du G, Liu X, Chen X, Song M, Yan Y, Jiao R, Wang C: Drosophila histone deacetylase 6 protects dopaminergic neurons against α-synuclein toxicity by promoting inclusion formation. Mol Biol Cell. 2010, 21: 2128-2137. 10.1091/mbc.E10-03-0200.PubMedCentralPubMed
111.
go back to reference Savitt JM, Dawson VL, Dawson TM: Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006, 116: 1744-1754. 10.1172/JCI29178.PubMedCentralPubMed Savitt JM, Dawson VL, Dawson TM: Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006, 116: 1744-1754. 10.1172/JCI29178.PubMedCentralPubMed
112.
go back to reference Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP: Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010, 189: 671-679. 10.1083/jcb.201001039.PubMedCentralPubMed Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP: Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010, 189: 671-679. 10.1083/jcb.201001039.PubMedCentralPubMed
113.
go back to reference Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, Fields S: Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci USA. 2001, 98: 13201-13206. 10.1073/pnas.191498198.PubMedCentralPubMed Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, Fields S: Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci USA. 2001, 98: 13201-13206. 10.1073/pnas.191498198.PubMedCentralPubMed
114.
go back to reference Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren SR, Li XJ, Albin RL, Detloff PJ: Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Human Mol Gen. 2001, 10: 137-144. 10.1093/hmg/10.2.137. Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren SR, Li XJ, Albin RL, Detloff PJ: Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Human Mol Gen. 2001, 10: 137-144. 10.1093/hmg/10.2.137.
115.
go back to reference Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LSB: Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in Drosophila. Neuron. 2003, 40: 25-40. 10.1016/S0896-6273(03)00594-4.PubMed Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LSB: Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in Drosophila. Neuron. 2003, 40: 25-40. 10.1016/S0896-6273(03)00594-4.PubMed
116.
go back to reference Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, et al: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005, 280: 556-563.PubMed Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, et al: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005, 280: 556-563.PubMed
117.
118.
go back to reference Bobrowska A, Paganetti P, Matthias P, Bates GP: Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One. 2011, 6: e20696-10.1371/journal.pone.0020696.PubMedCentralPubMed Bobrowska A, Paganetti P, Matthias P, Bates GP: Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One. 2011, 6: e20696-10.1371/journal.pone.0020696.PubMedCentralPubMed
119.
go back to reference D’Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP, Vanden Berghe P, Timmerman V, Robberecht W, Van Den Bosch L: HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med. 2011, 17: 968-974. 10.1038/nm.2396.PubMed D’Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP, Vanden Berghe P, Timmerman V, Robberecht W, Van Den Bosch L: HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med. 2011, 17: 968-974. 10.1038/nm.2396.PubMed
120.
go back to reference Fiesel FC, Voigt A, Weber SS, Van den Haute C, Waldenmaier A, Gorner K, Walter M, Anderson ML, Kern JV, Rasse TM, et al: Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J. 2010, 29: 209-221. 10.1038/emboj.2009.324.PubMedCentralPubMed Fiesel FC, Voigt A, Weber SS, Van den Haute C, Waldenmaier A, Gorner K, Walter M, Anderson ML, Kern JV, Rasse TM, et al: Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J. 2010, 29: 209-221. 10.1038/emboj.2009.324.PubMedCentralPubMed
121.
go back to reference Wells JA, McClendon CL: Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature. 2007, 450: 1001-1009. 10.1038/nature06526.PubMed Wells JA, McClendon CL: Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature. 2007, 450: 1001-1009. 10.1038/nature06526.PubMed
Metadata
Title
HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs?
Authors
Claudia Simões-Pires
Vincent Zwick
Alessandra Nurisso
Esther Schenker
Pierre-Alain Carrupt
Muriel Cuendet
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2013
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-8-7

Other articles of this Issue 1/2013

Molecular Neurodegeneration 1/2013 Go to the issue