Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2012

Open Access 01-12-2012 | Research article

Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP

Authors: Anaïs Aulas, Stéphanie Stabile, Christine Vande Velde

Published in: Molecular Neurodegeneration | Issue 1/2012

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of upper and lower motor neurons, a cell type that is intrinsically more vulnerable than other cell types to exogenous stress. The interplay between genetic susceptibility and environmental exposures to toxins has long been thought to be relevant to ALS. One cellular mechanism to overcome stress is the formation of small dense cytoplasmic domains called stress granules (SG) which contain translationally arrested mRNAs. TDP-43 (encoded by TARDBP) is an ALS-causative gene that we have previously implicated in the regulation of the core stress granule proteins G3BP and TIA-1. TIA-1 and G3BP localize to SG under nearly all stress conditions and are considered essential to SG formation. Here, we report that TDP-43 is required for proper SG dynamics, especially SG assembly as marked by the secondary aggregation of TIA-1. We also show that SG assembly, but not initiation, requires G3BP. Furthermore, G3BP can rescue defective SG assembly in cells depleted of endogenous TDP-43. We also demonstrate that endogenous TDP-43 and FUS do not have overlapping functions in this cellular process as SG initiation and assembly occur normally in the absence of FUS. Lastly, we observe that SG assembly is a contributing factor in the survival of neuronal-like cells responding to acute oxidative stress. These data raise the possibility that disruptions of normal stress granule dynamics by loss of nuclear TDP-43 function may contribute to neuronal vulnerability in ALS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dion PA, Daoud H, Rouleau GA: Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 2009, 10:769–782.CrossRefPubMed Dion PA, Daoud H, Rouleau GA: Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 2009, 10:769–782.CrossRefPubMed
2.
go back to reference Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al.: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008, 40:572–574.CrossRefPubMed Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al.: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008, 40:572–574.CrossRefPubMed
3.
go back to reference Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al.: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319:1668–1672.CrossRefPubMed Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al.: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319:1668–1672.CrossRefPubMed
5.
go back to reference Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323:1205–1208.CrossRefPubMed Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323:1205–1208.CrossRefPubMed
6.
go back to reference Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al.: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323:1208–1211.CrossRefPubMedPubMedCentral Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al.: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323:1208–1211.CrossRefPubMedPubMedCentral
8.
go back to reference Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141–150.CrossRefPubMed Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141–150.CrossRefPubMed
9.
go back to reference Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al.: Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004, 15:5383–5398.CrossRefPubMedPubMedCentral Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al.: Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004, 15:5383–5398.CrossRefPubMedPubMedCentral
10.
go back to reference Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, et al.: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003, 160:823–831.CrossRefPubMedPubMedCentral Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, et al.: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003, 160:823–831.CrossRefPubMedPubMedCentral
11.
go back to reference Kedersha N, Anderson P: Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002, 30:963–969.CrossRefPubMed Kedersha N, Anderson P: Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002, 30:963–969.CrossRefPubMed
12.
go back to reference McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, et al.: TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 2011, 20:1400–1410.CrossRefPubMed McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, et al.: TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 2011, 20:1400–1410.CrossRefPubMed
13.
go back to reference Guil S, Long JC, Caceres JF: hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006, 26:5744–5758.CrossRefPubMedPubMedCentral Guil S, Long JC, Caceres JF: hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006, 26:5744–5758.CrossRefPubMedPubMedCentral
14.
go back to reference Zou T, Yang X, Pan D, Huang J, Sahin M, Zhou J: SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress. Cell Mol Neurobiol 2011, 31:541–550.CrossRefPubMed Zou T, Yang X, Pan D, Huang J, Sahin M, Zhou J: SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress. Cell Mol Neurobiol 2011, 31:541–550.CrossRefPubMed
15.
go back to reference Qi D, Huang S, Miao R, She ZG, Quinn T, Chang Y, et al.: Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011, 286:41692–41700.CrossRefPubMedPubMedCentral Qi D, Huang S, Miao R, She ZG, Quinn T, Chang Y, et al.: Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011, 286:41692–41700.CrossRefPubMedPubMedCentral
16.
go back to reference Didiot MC, Subramanian M, Flatter E, Mandel JL, Moine H: Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol Biol Cell 2009, 20:428–437.CrossRefPubMedPubMedCentral Didiot MC, Subramanian M, Flatter E, Mandel JL, Moine H: Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol Biol Cell 2009, 20:428–437.CrossRefPubMedPubMedCentral
17.
go back to reference Hua Y, Zhou J: Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 2004, 572:69–74.CrossRefPubMed Hua Y, Zhou J: Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 2004, 572:69–74.CrossRefPubMed
18.
go back to reference Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, et al.: Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007, 18:1385–1396.CrossRefPubMedPubMedCentral Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, et al.: Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007, 18:1385–1396.CrossRefPubMedPubMedCentral
19.
go back to reference Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, et al.: PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats. PLoS One 2011, 6:e17951.CrossRefPubMedPubMedCentral Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, et al.: PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats. PLoS One 2011, 6:e17951.CrossRefPubMedPubMedCentral
20.
go back to reference Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, et al.: Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 2011, 20:1697–1700.CrossRefPubMedPubMedCentral Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, et al.: Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 2011, 20:1697–1700.CrossRefPubMedPubMedCentral
21.
go back to reference Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al.: Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010, 466:1069–1075.CrossRefPubMedPubMedCentral Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al.: Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010, 466:1069–1075.CrossRefPubMedPubMedCentral
22.
go back to reference Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, et al.: Association of Long ATXN2 CAG Repeat Sizes With Increased Risk of Amyotrophic Lateral Sclerosis. Arch Neurol 2011, 68:739–742.PubMed Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, et al.: Association of Long ATXN2 CAG Repeat Sizes With Increased Risk of Amyotrophic Lateral Sclerosis. Arch Neurol 2011, 68:739–742.PubMed
23.
go back to reference Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderwyde T, Citro A, Mehta T, et al.: Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 2010, 5:e13250.CrossRefPubMedPubMedCentral Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderwyde T, Citro A, Mehta T, et al.: Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 2010, 5:e13250.CrossRefPubMedPubMedCentral
24.
go back to reference Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P III, Good SK, et al.: TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 2010, 31:1098–1108.CrossRefPubMedPubMedCentral Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P III, Good SK, et al.: TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 2010, 31:1098–1108.CrossRefPubMedPubMedCentral
25.
go back to reference Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al.: TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 2009, 111:1051–1061.CrossRefPubMed Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al.: TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 2009, 111:1051–1061.CrossRefPubMed
26.
go back to reference Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, et al.: Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 2010, 32:2323.e27–2323.e40.CrossRef Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, et al.: Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 2010, 32:2323.e27–2323.e40.CrossRef
27.
go back to reference Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, et al.: Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 2010, 19:4160–4175.CrossRefPubMedPubMedCentral Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, et al.: Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 2010, 19:4160–4175.CrossRefPubMedPubMedCentral
28.
go back to reference Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al.: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 2010, 29:2841–2857.CrossRefPubMedPubMedCentral Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al.: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 2010, 29:2841–2857.CrossRefPubMedPubMedCentral
29.
go back to reference Baumer D, Hilton D, Paine SM, Turner MR, Lowe J, Talbot K, et al.: Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 2010, 75:611–618.CrossRefPubMedPubMedCentral Baumer D, Hilton D, Paine SM, Turner MR, Lowe J, Talbot K, et al.: Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 2010, 75:611–618.CrossRefPubMedPubMedCentral
30.
go back to reference Parker SJ, Meyerowitz J, James JL, Liddell JR, Crouch PJ, Kanninen KM, et al.: Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem Int 2012, 60:415–424.CrossRefPubMed Parker SJ, Meyerowitz J, James JL, Liddell JR, Crouch PJ, Kanninen KM, et al.: Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem Int 2012, 60:415–424.CrossRefPubMed
31.
go back to reference Lee EB, Lee VM, Trojanowski JQ: Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2012, 13:38–50. Lee EB, Lee VM, Trojanowski JQ: Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2012, 13:38–50.
32.
go back to reference Baloh RH: TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J 2011, 278:3539–3549.CrossRefPubMedPubMedCentral Baloh RH: TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J 2011, 278:3539–3549.CrossRefPubMedPubMedCentral
33.
go back to reference Wegorzewska I, Baloh RH: TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis 2011, 8:262–274.CrossRefPubMed Wegorzewska I, Baloh RH: TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis 2011, 8:262–274.CrossRefPubMed
34.
go back to reference Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al.: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130–133.CrossRefPubMed Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al.: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130–133.CrossRefPubMed
35.
go back to reference Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al.: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351:602–611.CrossRefPubMed Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al.: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351:602–611.CrossRefPubMed
37.
go back to reference Fiesel FC, Voigt A, Weber SS, Van den HC, Waldenmaier A, Gorner K, et al.: Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 2010, 29:209–221.CrossRefPubMed Fiesel FC, Voigt A, Weber SS, Van den HC, Waldenmaier A, Gorner K, et al.: Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 2010, 29:209–221.CrossRefPubMed
38.
go back to reference Kryndushkin D, Wickner RB, Shewmaker F: FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell 2011, 2:223–236.CrossRefPubMedPubMedCentral Kryndushkin D, Wickner RB, Shewmaker F: FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell 2011, 2:223–236.CrossRefPubMedPubMedCentral
39.
go back to reference Kim SH, Shanware N, Bowler MJ, Tibbetts RS: ALS-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to coregulate HDAC6 mRNA. J Biol Chem 2010, 286:12766–12774. Kim SH, Shanware N, Bowler MJ, Tibbetts RS: ALS-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to coregulate HDAC6 mRNA. J Biol Chem 2010, 286:12766–12774.
40.
go back to reference Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, Parker JA: Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans. PLoS One 2012, 7:e31321.CrossRefPubMedPubMedCentral Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, Parker JA: Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans. PLoS One 2012, 7:e31321.CrossRefPubMedPubMedCentral
41.
go back to reference Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al.: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 2011, 14:459–468.CrossRefPubMedPubMedCentral Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al.: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 2011, 14:459–468.CrossRefPubMedPubMedCentral
42.
go back to reference White JP, Cardenas AM, Marissen WE, Lloyd RE: Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe 2007, 2:295–305.CrossRefPubMed White JP, Cardenas AM, Marissen WE, Lloyd RE: Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe 2007, 2:295–305.CrossRefPubMed
43.
go back to reference Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE: Stable formation of compositionally unique stress granules in virus-infected cells. J Virol 2010, 84:3654–3665.CrossRefPubMed Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE: Stable formation of compositionally unique stress granules in virus-infected cells. J Virol 2010, 84:3654–3665.CrossRefPubMed
44.
go back to reference Zekri L, Chebli K, Tourriere H, Nielsen FC, Hansen TV, Rami A, et al.: Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol 2005, 25:8703–8716.CrossRefPubMedPubMedCentral Zekri L, Chebli K, Tourriere H, Nielsen FC, Hansen TV, Rami A, et al.: Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol 2005, 25:8703–8716.CrossRefPubMedPubMedCentral
45.
go back to reference Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S: Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 2012, 21:136–149.CrossRefPubMed Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S: Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 2012, 21:136–149.CrossRefPubMed
47.
go back to reference Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P: A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 1991, 67:629–639.CrossRefPubMed Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P: A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 1991, 67:629–639.CrossRefPubMed
48.
go back to reference Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, et al.: Local RNA translation at the synapse and in disease. J Neurosci 2011, 31:16086–16093.CrossRefPubMedPubMedCentral Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, et al.: Local RNA translation at the synapse and in disease. J Neurosci 2011, 31:16086–16093.CrossRefPubMedPubMedCentral
Metadata
Title
Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP
Authors
Anaïs Aulas
Stéphanie Stabile
Christine Vande Velde
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2012
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-7-54

Other articles of this Issue 1/2012

Molecular Neurodegeneration 1/2012 Go to the issue