Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2011

Open Access 01-12-2011 | Research article

PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease

Authors: Elahe Taherzadeh-Fard, Carsten Saft, Denis A Akkad, Stefan Wieczorek, Aiden Haghikia, Andrew Chan, Jörg T Epplen, Larissa Arning

Published in: Molecular Neurodegeneration | Issue 1/2011

Login to get access

Abstract

Background

Huntington disease (HD) is an inherited neurodegenerative disease caused by an abnormal expansion of a CAG repeat in the huntingtin HTT (HD) gene. The primary genetic determinant of the age at onset (AO) is the length of the HTT CAG repeat; however, the remaining genetic contribution to the AO of HD has largely not been elucidated. Recent studies showed that impaired functioning of the peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1alpha) contributes to mitochondrial dysfunction and appears to play an important role in HD pathogenesis. Further genetic evidence for involvement of PGC-1alpha in HD pathogenesis was generated by the findings that sequence variations in the PPARGC1A gene encoding PGC-1alpha exert modifying effects on the AO in HD. In this study, we hypothesised that polymorphisms in PGC-1alpha downstream targets might also contribute to the variation in the AO.

Results

In over 400 German HD patients, polymorphisms in the nuclear respiratory factor 1 gene, NRF-1, and the mitochondrial transcription factor A, encoded by TFAM showed nominally significant association with AO of HD. When combining these results with the previously described modifiers rs7665116 in PPARGC1A and C7028T in the cytochrome c oxidase subunit I (CO1, mt haplogroup H) in a multivariable model, a substantial proportion of the variation in AO can be explained by the joint effect of significant modifiers and their interactions, respectively.

Conclusions

These results underscore that impairment of mitochondrial function plays a critical role in the pathogenesis of HD and that upstream transcriptional activators of PGC-1alpha may be useful targets in the treatment of HD.
Appendix
Available only for authorised users
Literature
1.
go back to reference The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is unstable on Huntington's disease chromosomes. Cell. 1993, 26: 971-983. The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is unstable on Huntington's disease chromosomes. Cell. 1993, 26: 971-983.
2.
go back to reference Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993, 4: 393-397. 10.1038/ng0893-393.PubMedCrossRef Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993, 4: 393-397. 10.1038/ng0893-393.PubMedCrossRef
3.
go back to reference Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993, 4: 398-403. 10.1038/ng0893-398.PubMedCrossRef Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993, 4: 398-403. 10.1038/ng0893-398.PubMedCrossRef
4.
go back to reference Duyao M, Ambrose C, Myers R, Noveletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, et al: Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993, 4: 387-392. 10.1038/ng0893-387.PubMedCrossRef Duyao M, Ambrose C, Myers R, Noveletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, et al: Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993, 4: 387-392. 10.1038/ng0893-387.PubMedCrossRef
6.
go back to reference Andresen JM, Gaya'n J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, US-Venezuela Collaborative Research Group, Cardon LR, Housman DE, Wexler NS: Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds. J Med Genet. 2007, 44: 44-50.PubMedPubMedCentralCrossRef Andresen JM, Gaya'n J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, US-Venezuela Collaborative Research Group, Cardon LR, Housman DE, Wexler NS: Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds. J Med Genet. 2007, 44: 44-50.PubMedPubMedCentralCrossRef
7.
go back to reference Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT: NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics. 2005, 6: 25-28. 10.1007/s10048-004-0198-8.PubMedCrossRef Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT: NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics. 2005, 6: 25-28. 10.1007/s10048-004-0198-8.PubMedCrossRef
8.
go back to reference Arning L, Monté D, Hansen W, Wieczorek S, Jagiello P, Akkad DA, Andrich J, Kraus PH, Saft C, Epplen JT: ASK1 and MAP2K6 as modifiers of age at onset in Huntington's disease. J Mol Med. 2008, 86: 485-490. 10.1007/s00109-007-0299-6.PubMedCrossRef Arning L, Monté D, Hansen W, Wieczorek S, Jagiello P, Akkad DA, Andrich J, Kraus PH, Saft C, Epplen JT: ASK1 and MAP2K6 as modifiers of age at onset in Huntington's disease. J Mol Med. 2008, 86: 485-490. 10.1007/s00109-007-0299-6.PubMedCrossRef
9.
go back to reference Metzger S, Rong J, Nguyen HP, Cape A, Tomiuk J, Soehn AS, Propping P, Freudenberg-Hua Y, Freudenberg J, Tong L, et al: Huntingtin-associated protein-1 is a modifier of the ageat - onset of Huntington's disease. Hum Mol Genet. 2008, 17: 1137-1146. 10.1093/hmg/ddn003.PubMedCrossRef Metzger S, Rong J, Nguyen HP, Cape A, Tomiuk J, Soehn AS, Propping P, Freudenberg-Hua Y, Freudenberg J, Tong L, et al: Huntingtin-associated protein-1 is a modifier of the ageat - onset of Huntington's disease. Hum Mol Genet. 2008, 17: 1137-1146. 10.1093/hmg/ddn003.PubMedCrossRef
10.
go back to reference Taherzadeh-Fard E, Saft C, Wieczorek S, Epplen JT, Arning L: Age at onset in Huntington's disease: replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics. 2010, 4: 435-439.CrossRef Taherzadeh-Fard E, Saft C, Wieczorek S, Epplen JT, Arning L: Age at onset in Huntington's disease: replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics. 2010, 4: 435-439.CrossRef
11.
go back to reference Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W: The gene coding for PGC-1alpha modifies age at onset in Huntington's disease. Mol Neurodegener. 2009, 4: 3-10.1186/1750-1326-4-3.PubMedPubMedCentralCrossRef Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W: The gene coding for PGC-1alpha modifies age at onset in Huntington's disease. Mol Neurodegener. 2009, 4: 3-10.1186/1750-1326-4-3.PubMedPubMedCentralCrossRef
12.
go back to reference Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L: PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener. 2009, 4: 10-10.1186/1750-1326-4-10.PubMedPubMedCentralCrossRef Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L: PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener. 2009, 4: 10-10.1186/1750-1326-4-10.PubMedPubMedCentralCrossRef
13.
go back to reference Arning L, Haghikia A, Taherzadeh-Fard E, Saft C, Andrich J, Pula B, Höxtermann S, Wieczorek S, Akkad DA, Perrech M, Gold R, Epplen JT, Chan A: Mitochondrial haplogroup H correlates with ATP levels and age at onset in Huntington disease. J Mol Med. 2010, 4: 431-436.CrossRef Arning L, Haghikia A, Taherzadeh-Fard E, Saft C, Andrich J, Pula B, Höxtermann S, Wieczorek S, Akkad DA, Perrech M, Gold R, Epplen JT, Chan A: Mitochondrial haplogroup H correlates with ATP levels and age at onset in Huntington disease. J Mol Med. 2010, 4: 431-436.CrossRef
14.
go back to reference Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP: Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener. 2011, 6: 1-10.1186/1750-1326-6-1.PubMedPubMedCentralCrossRef Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP: Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener. 2011, 6: 1-10.1186/1750-1326-6-1.PubMedPubMedCentralCrossRef
15.
go back to reference Róna-Vörös K, Weydt P: The role of PGC-1α in the pathogenesis of neurodegenerative disorders. Curr Drug Targets. 2010, 10: 1262-1269.CrossRef Róna-Vörös K, Weydt P: The role of PGC-1α in the pathogenesis of neurodegenerative disorders. Curr Drug Targets. 2010, 10: 1262-1269.CrossRef
16.
go back to reference Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, et al: Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004, 119: 121-135. 10.1016/j.cell.2004.09.013.PubMedCrossRef Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, et al: Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004, 119: 121-135. 10.1016/j.cell.2004.09.013.PubMedCrossRef
17.
go back to reference Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, et al: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 4: 101-CrossRef Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, et al: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 4: 101-CrossRef
18.
go back to reference Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D: Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006, 127: 59-69. 10.1016/j.cell.2006.09.015.PubMedCrossRef Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D: Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006, 127: 59-69. 10.1016/j.cell.2006.09.015.PubMedCrossRef
19.
go back to reference Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, et al: Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab. 2006, 4: 349-362. 10.1016/j.cmet.2006.10.004.PubMedCrossRef Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, et al: Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab. 2006, 4: 349-362. 10.1016/j.cmet.2006.10.004.PubMedCrossRef
20.
go back to reference Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal MF: Impaired PGC-1alpha function in muscle in Huntington's disease. Hum Mol Genet. 2009, 16: 3048-3065.CrossRef Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal MF: Impaired PGC-1alpha function in muscle in Huntington's disease. Hum Mol Genet. 2009, 16: 3048-3065.CrossRef
21.
go back to reference Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF: Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet. 2010, 16: 3190-3205.CrossRef Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF: Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet. 2010, 16: 3190-3205.CrossRef
22.
go back to reference Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF: Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Exp Neurol. 2010, 1: 74-84.CrossRef Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF: Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Exp Neurol. 2010, 1: 74-84.CrossRef
23.
go back to reference Scarpulla RC: Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002, 1-2: 1-14.CrossRef Scarpulla RC: Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002, 1-2: 1-14.CrossRef
24.
go back to reference Scarpulla RC: Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2010. Scarpulla RC: Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2010.
25.
go back to reference Kelly DP, Scarpulla RC: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 4: 357-368.CrossRef Kelly DP, Scarpulla RC: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 4: 357-368.CrossRef
26.
go back to reference Blesa JR, Prieto-Ruiz JA, Hernández JM, Hernández-Yago J: NRF-2 transcription factor is required for human TOMM20 gene expression. Gene. 2007, 1-2: 198-208.CrossRef Blesa JR, Prieto-Ruiz JA, Hernández JM, Hernández-Yago J: NRF-2 transcription factor is required for human TOMM20 gene expression. Gene. 2007, 1-2: 198-208.CrossRef
27.
go back to reference Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, Lo YM: Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem. 2003, 5: 719-726.CrossRef Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, Lo YM: Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem. 2003, 5: 719-726.CrossRef
28.
go back to reference Coyle EF: Physical activity as a metabolic stressor. Am J Clin Nutr. 2000, 72: 512S-520S.PubMed Coyle EF: Physical activity as a metabolic stressor. Am J Clin Nutr. 2000, 72: 512S-520S.PubMed
29.
go back to reference He Z, Hu Y, Feng L, Li Y, Liu G, Xi Y, Wen L, Lucia A: NRF-1 genotypes and endurance exercise capacity in young Chinese men. Br J Sports Med. 2008, 5: 361-366.CrossRef He Z, Hu Y, Feng L, Li Y, Liu G, Xi Y, Wen L, Lucia A: NRF-1 genotypes and endurance exercise capacity in young Chinese men. Br J Sports Med. 2008, 5: 361-366.CrossRef
30.
go back to reference Lucia A, Gómez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, Chicharro JL, Ekelund U, Brage S, Earnest CP, et al: PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol. 2005, 1: 344-348.CrossRef Lucia A, Gómez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, Chicharro JL, Ekelund U, Brage S, Earnest CP, et al: PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol. 2005, 1: 344-348.CrossRef
31.
go back to reference Niemi AK, Majamaa K: Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet. 2005, 13: 965-969. 10.1038/sj.ejhg.5201438.PubMedCrossRef Niemi AK, Majamaa K: Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet. 2005, 13: 965-969. 10.1038/sj.ejhg.5201438.PubMedCrossRef
32.
go back to reference Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E: Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion. 2007, 7: 354-357. 10.1016/j.mito.2007.06.002.PubMedCrossRef Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E: Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion. 2007, 7: 354-357. 10.1016/j.mito.2007.06.002.PubMedCrossRef
33.
go back to reference Stefan N, Thamer C, Staiger H, Machicao F, Machann J, Schick F, Venter C, Niess A, Laakso M, Fritsche A, et al: Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J Clin Endocrinol Metab. 2007, 92: 1827-1833. 10.1210/jc.2006-1785.PubMedCrossRef Stefan N, Thamer C, Staiger H, Machicao F, Machann J, Schick F, Venter C, Niess A, Laakso M, Fritsche A, et al: Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J Clin Endocrinol Metab. 2007, 92: 1827-1833. 10.1210/jc.2006-1785.PubMedCrossRef
34.
go back to reference Ahmetov II, Popov DV, Missina SS, Vinogradova OL, Rogozkin VA: Association of mitochondrial transcription factor (TFAM) gene polymorphism with physical performance in athletes. Human Physiology. 2010, 36: 229-233. 10.1134/S0362119710020155.CrossRef Ahmetov II, Popov DV, Missina SS, Vinogradova OL, Rogozkin VA: Association of mitochondrial transcription factor (TFAM) gene polymorphism with physical performance in athletes. Human Physiology. 2010, 36: 229-233. 10.1134/S0362119710020155.CrossRef
35.
go back to reference Handschin C: The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol Sci. 2009, 6: 322-329.CrossRef Handschin C: The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol Sci. 2009, 6: 322-329.CrossRef
36.
go back to reference Wu Z, Boss O: Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets. 2007, 10: 1329-1338.CrossRef Wu Z, Boss O: Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets. 2007, 10: 1329-1338.CrossRef
37.
go back to reference Jagiello P, Gencik M, Arning L, Wieczorek S, Kunstmann E, Csernok E, Gross WL, Epplen JT: New genomic region for Wegener's granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet. 2004, 5: 468-477.CrossRef Jagiello P, Gencik M, Arning L, Wieczorek S, Kunstmann E, Csernok E, Gross WL, Epplen JT: New genomic region for Wegener's granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet. 2004, 5: 468-477.CrossRef
38.
go back to reference Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, et al: The structure of haplotype blocks in the human genome. Science. 2002, 296: 2225-2229. 10.1126/science.1069424.PubMedCrossRef Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, et al: The structure of haplotype blocks in the human genome. Science. 2002, 296: 2225-2229. 10.1126/science.1069424.PubMedCrossRef
39.
go back to reference He Z, Hu Y, Feng L, Lu Y, Liu G, Xi Y, Wen L, McNaughton LR: NRF2 genotype improves endurance capacity in response to training. Int J Sports Med. 2007, 9: 717-721.CrossRef He Z, Hu Y, Feng L, Lu Y, Liu G, Xi Y, Wen L, McNaughton LR: NRF2 genotype improves endurance capacity in response to training. Int J Sports Med. 2007, 9: 717-721.CrossRef
40.
go back to reference Kuningas M, Putters M, Westendorp RG, Slagboom PE, van Heemst D: SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J Gerontol A Biol Sci Med Sci. 2007, 9: 960-965.CrossRef Kuningas M, Putters M, Westendorp RG, Slagboom PE, van Heemst D: SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J Gerontol A Biol Sci Med Sci. 2007, 9: 960-965.CrossRef
Metadata
Title
PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease
Authors
Elahe Taherzadeh-Fard
Carsten Saft
Denis A Akkad
Stefan Wieczorek
Aiden Haghikia
Andrew Chan
Jörg T Epplen
Larissa Arning
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2011
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-6-32

Other articles of this Issue 1/2011

Molecular Neurodegeneration 1/2011 Go to the issue