Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2008

Open Access 01-12-2008 | Research article

Ginkgolides protect against amyloid-β1–42-mediated synapse damage in vitro

Authors: Clive Bate, Mourad Tayebi, Alun Williams

Published in: Molecular Neurodegeneration | Issue 1/2008

Login to get access

Abstract

Background

The early stages of Alzheimer's disease (AD) are closely associated with the production of the Aβ1–42 peptide, loss of synapses and gradual cognitive decline. Since some epidemiological studies showed that EGb 761, an extract from the leaves of the Ginkgo biloba tree, had a beneficial effect on mild forms of AD, the effects of some of the major components of the EGb 761 extract (ginkgolides A and B, myricetin and quercetin) on synapse damage in response to Aβ1–42 were examined.

Results

The addition of Aβ1–42 to cortical or hippocampal neurons reduced the amounts of cell associated synaptophysin, a pre-synaptic membrane protein that is essential for neurotransmission, indicating synapse damage. The effects of Aβ1–42 on synapses were apparent at concentrations approximately 100 fold less than that required to kill neurons; the synaptophysin content of neuronal cultures was reduced by 50% by 50 nM Aβ1–42. Pre-treatment of cortical or hippocampal neuronal cultures with ginkgolides A or B, but not with myrecitin or quercetin, protected against Aβ1–42-induced loss of synaptophysin. This protective effect was achieved with nanomolar concentrations of ginkgolides. Previous studies indicated that the ginkgolides are platelet-activating factor (PAF) receptor antagonists and here we show that Aβ1–42-induced loss of synaptophysin from neuronal cultures was also reduced by pre-treatment with other PAF antagonists (Hexa-PAF and CV6209). PAF, but not lyso-PAF, mimicked the effects Aβ1–42 and caused a dose-dependent reduction in the synaptophysin content of neurons. This effect of PAF was greatly reduced by pre-treatment with ginkgolide B. In contrast, ginkgolide B did not affect the loss of synaptophysin in neurons incubated with prostaglandin E2.

Conclusion

Pre-treatment with ginkgolides A or B protects neurons against Aβ1–42-induced synapse damage. These ginkgolides also reduced the effects of PAF, but not those of prostaglandin E2, on the synaptophysin content of neuronal cultures, results consistent with prior reports that ginkgolides act as PAF receptor antagonists. Such observations suggest that the ginkgolides are active components of Ginkgo biloba preparations and may protect against the synapse damage and the cognitive loss seen during the early stages of AD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vassar R, Citron M: A[beta]-Generating Enzymes: Recent Advances in [beta]- and [gamma]-Secretase Research. Neuron. 2000, 27 (3): 419-422. 10.1016/S0896-6273(00)00051-9.CrossRefPubMed Vassar R, Citron M: A[beta]-Generating Enzymes: Recent Advances in [beta]- and [gamma]-Secretase Research. Neuron. 2000, 27 (3): 419-422. 10.1016/S0896-6273(00)00051-9.CrossRefPubMed
2.
go back to reference Esler WP, Wolfe MS: A portrait of Alzheimer secretases--new features and familiar faces. Science. 2001, 293: 1449-1454. 10.1126/science.1064638.CrossRefPubMed Esler WP, Wolfe MS: A portrait of Alzheimer secretases--new features and familiar faces. Science. 2001, 293: 1449-1454. 10.1126/science.1064638.CrossRefPubMed
3.
go back to reference Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297 (5580): 353-356. 10.1126/science.1072994.CrossRefPubMed Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297 (5580): 353-356. 10.1126/science.1072994.CrossRefPubMed
4.
go back to reference Lorenzo A, Yankner BA: Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994, 91 (25): 12243-12247. 10.1073/pnas.91.25.12243.PubMedCentralCrossRefPubMed Lorenzo A, Yankner BA: Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994, 91 (25): 12243-12247. 10.1073/pnas.91.25.12243.PubMedCentralCrossRefPubMed
5.
go back to reference Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL: Diffusible, nonfibrillar ligands derived from Abeta 1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998, 95 (11): 6448-6453. 10.1073/pnas.95.11.6448.PubMedCentralCrossRefPubMed Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL: Diffusible, nonfibrillar ligands derived from Abeta 1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998, 95 (11): 6448-6453. 10.1073/pnas.95.11.6448.PubMedCentralCrossRefPubMed
6.
go back to reference Klein WL, Krafft GA, Finch CE: Targeting small A[beta] oligomers: the solution to an Alzheimer's disease conundrum?. Trends in Neurosciences. 2001, 24 (4): 219-224. 10.1016/S0166-2236(00)01749-5.CrossRefPubMed Klein WL, Krafft GA, Finch CE: Targeting small A[beta] oligomers: the solution to an Alzheimer's disease conundrum?. Trends in Neurosciences. 2001, 24 (4): 219-224. 10.1016/S0166-2236(00)01749-5.CrossRefPubMed
7.
go back to reference Elferink LA, Scheller RH: Synaptic vesicle proteins and regulated exocytosis. J Cell Sci Suppl. 1993, 17: 75-79.CrossRefPubMed Elferink LA, Scheller RH: Synaptic vesicle proteins and regulated exocytosis. J Cell Sci Suppl. 1993, 17: 75-79.CrossRefPubMed
8.
go back to reference Hamos JE, DeGennaro LJ, Drachman DA: Synaptic loss in Alzheimer's disease and other dementias. Neurology. 1989, 39 (3): 355-361.CrossRefPubMed Hamos JE, DeGennaro LJ, Drachman DA: Synaptic loss in Alzheimer's disease and other dementias. Neurology. 1989, 39 (3): 355-361.CrossRefPubMed
9.
go back to reference Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, Riekkinen: Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in alzheimer's disease. Neuroscience. 1995, 64 (2): 375-384. 10.1016/0306-4522(94)00422-2.CrossRefPubMed Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, Riekkinen: Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in alzheimer's disease. Neuroscience. 1995, 64 (2): 375-384. 10.1016/0306-4522(94)00422-2.CrossRefPubMed
10.
go back to reference Selkoe DJ: Alzheimer's Disease Is a Synaptic Failure. Science. 2002, 298 (5594): 789-791. 10.1126/science.1074069.CrossRefPubMed Selkoe DJ: Alzheimer's Disease Is a Synaptic Failure. Science. 2002, 298 (5594): 789-791. 10.1126/science.1074069.CrossRefPubMed
11.
go back to reference DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990, 27 (5): 457-464. 10.1002/ana.410270502.CrossRefPubMed DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990, 27 (5): 457-464. 10.1002/ana.410270502.CrossRefPubMed
12.
go back to reference Bate C, Williams A: Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A2 by A[beta]1-42. Neuropharmacology. 2007, 53 (2): 222-231. 10.1016/j.neuropharm.2007.05.003.CrossRefPubMed Bate C, Williams A: Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A2 by A[beta]1-42. Neuropharmacology. 2007, 53 (2): 222-231. 10.1016/j.neuropharm.2007.05.003.CrossRefPubMed
13.
go back to reference Le Bars PL, Velasco FM, Ferguson JM, Dessain EC, Kieser M, Hoerr R: Influence of the severity of cognitive impairment on the effect of the Gnkgo biloba extract EGb 761 in Alzheimer's disease. Neuropsychobiology. 2002, 45: 19-26. 10.1159/000048668.CrossRefPubMed Le Bars PL, Velasco FM, Ferguson JM, Dessain EC, Kieser M, Hoerr R: Influence of the severity of cognitive impairment on the effect of the Gnkgo biloba extract EGb 761 in Alzheimer's disease. Neuropsychobiology. 2002, 45: 19-26. 10.1159/000048668.CrossRefPubMed
14.
go back to reference DeFeudis FV, Drieu K: Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. CurrDrug Targets. 2000, 1 (1): 25-58. 10.2174/1389450003349380.CrossRef DeFeudis FV, Drieu K: Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. CurrDrug Targets. 2000, 1 (1): 25-58. 10.2174/1389450003349380.CrossRef
15.
go back to reference Ahlemeyer B, Krieglstein J: Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer's disease. Pharmacopsychiatry. 2003, 36 (Suppl 1): S8-S14.PubMed Ahlemeyer B, Krieglstein J: Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer's disease. Pharmacopsychiatry. 2003, 36 (Suppl 1): S8-S14.PubMed
16.
go back to reference Oken BS, Storzbach DM, Kaye JA: The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998, 55 (11): 1409-1415. 10.1001/archneur.55.11.1409.CrossRefPubMed Oken BS, Storzbach DM, Kaye JA: The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998, 55 (11): 1409-1415. 10.1001/archneur.55.11.1409.CrossRefPubMed
17.
go back to reference Solomon PR, Adams F, Silver A, Zimmer J, DeVeaux R: Ginkgo for memory enhancement: a randomized controlled trial. JAMA. 2002, 288 (7): 835-840. 10.1001/jama.288.7.835.CrossRefPubMed Solomon PR, Adams F, Silver A, Zimmer J, DeVeaux R: Ginkgo for memory enhancement: a randomized controlled trial. JAMA. 2002, 288 (7): 835-840. 10.1001/jama.288.7.835.CrossRefPubMed
18.
go back to reference Bate C, Salmona M, Williams A: Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1-42. JNeuroinflammation. 2004, 1 (1): 4-10.1186/1742-2094-1-4.CrossRef Bate C, Salmona M, Williams A: Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1-42. JNeuroinflammation. 2004, 1 (1): 4-10.1186/1742-2094-1-4.CrossRef
19.
go back to reference Oberpichler H, Sauer D, Rossberg C, Mennel HD, Krieglstein J: PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J Cereb Blood Flow Metab. 1990, 10: 133-135.CrossRefPubMed Oberpichler H, Sauer D, Rossberg C, Mennel HD, Krieglstein J: PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J Cereb Blood Flow Metab. 1990, 10: 133-135.CrossRefPubMed
20.
go back to reference Bate C, Salmona M, Williams A: The role of platelet activating factor in prion and amyloid-β neurotoxicity. Neuroreport. 2004, 15: 509-513. 10.1097/00001756-200403010-00025.CrossRefPubMed Bate C, Salmona M, Williams A: The role of platelet activating factor in prion and amyloid-β neurotoxicity. Neuroreport. 2004, 15: 509-513. 10.1097/00001756-200403010-00025.CrossRefPubMed
21.
go back to reference Oyama Y, Fuchs PA, Katayama N, Noda K: Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 1994, 635: 125-129. 10.1016/0006-8993(94)91431-1.CrossRefPubMed Oyama Y, Fuchs PA, Katayama N, Noda K: Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 1994, 635: 125-129. 10.1016/0006-8993(94)91431-1.CrossRefPubMed
22.
go back to reference Waschuk SA, Elton EA, Darabie AA, Fraser PE, McLaurin JA: Cellular membrane composition defines A beta-lipid interactions. J Biol Chem. 2001, 276 (36): 33561-33568. 10.1074/jbc.M103598200.CrossRefPubMed Waschuk SA, Elton EA, Darabie AA, Fraser PE, McLaurin JA: Cellular membrane composition defines A beta-lipid interactions. J Biol Chem. 2001, 276 (36): 33561-33568. 10.1074/jbc.M103598200.CrossRefPubMed
23.
go back to reference Lehtonen JY, Holopainen JM, Kinnunen PK: Activation of phospholipase A2 by amyloid beta-peptides in vitro. Biochemistry. 1996, 35: 9407-9414. 10.1021/bi960148o.CrossRefPubMed Lehtonen JY, Holopainen JM, Kinnunen PK: Activation of phospholipase A2 by amyloid beta-peptides in vitro. Biochemistry. 1996, 35: 9407-9414. 10.1021/bi960148o.CrossRefPubMed
24.
go back to reference Francescangeli E, Domanska-Janik K, Goracci G: Relative contribution of the de novo and remodelling pathways to the synthesis of platelet-activating factor in brain areas and during ischemia. J Lipid MediatCell Signal. 1996, 14 (1-3): 89-98. 10.1016/0929-7855(96)01513-1.CrossRef Francescangeli E, Domanska-Janik K, Goracci G: Relative contribution of the de novo and remodelling pathways to the synthesis of platelet-activating factor in brain areas and during ischemia. J Lipid MediatCell Signal. 1996, 14 (1-3): 89-98. 10.1016/0929-7855(96)01513-1.CrossRef
25.
go back to reference Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG: Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990, 265 (16): 9140-9145.PubMed Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG: Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990, 265 (16): 9140-9145.PubMed
26.
go back to reference Clark GD, Happel LT, Zorumski CF, Bazan NG: Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron. 1992, 9 (6): 1211-1216. 10.1016/0896-6273(92)90078-R.CrossRefPubMed Clark GD, Happel LT, Zorumski CF, Bazan NG: Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron. 1992, 9 (6): 1211-1216. 10.1016/0896-6273(92)90078-R.CrossRefPubMed
27.
go back to reference Kato K, Clark GD, Bazan NG, Zorumski CF: Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature. 1994, 367 (6459): 175-179. 10.1038/367175a0.CrossRefPubMed Kato K, Clark GD, Bazan NG, Zorumski CF: Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature. 1994, 367 (6459): 175-179. 10.1038/367175a0.CrossRefPubMed
28.
go back to reference Farooqui AA, Horrocks LA: Phospholipase A2-Generated Lipid Mediators in the Brain: The Good, the Bad, and the Ugly. The Neuroscientist. 2006, 12 (3): 245-260. 10.1177/1073858405285923.CrossRefPubMed Farooqui AA, Horrocks LA: Phospholipase A2-Generated Lipid Mediators in the Brain: The Good, the Bad, and the Ugly. The Neuroscientist. 2006, 12 (3): 245-260. 10.1177/1073858405285923.CrossRefPubMed
29.
go back to reference Shukla SD: Platelet-activating factor receptor and signal transduction mechanisms. FASEB J. 1992, 6 (6): 2296-2301.PubMed Shukla SD: Platelet-activating factor receptor and signal transduction mechanisms. FASEB J. 1992, 6 (6): 2296-2301.PubMed
30.
go back to reference Korth R, Nunez D, Bidault J, Benveniste J: Comparison of three paf-acether receptor antagonist ginkgolides. Eur J Pharmacol. 1988, 152: 101-110. 10.1016/0014-2999(88)90840-0.CrossRefPubMed Korth R, Nunez D, Bidault J, Benveniste J: Comparison of three paf-acether receptor antagonist ginkgolides. Eur J Pharmacol. 1988, 152: 101-110. 10.1016/0014-2999(88)90840-0.CrossRefPubMed
31.
go back to reference Stewart AG, Grigoriadis G: Structure-activity relationships for platelet-activating factor (PAF) and analogues reveal differences between PAF receptors on platelets and macrophages. J Lipid Mediat. 1991, 4 (3): 299-308.PubMed Stewart AG, Grigoriadis G: Structure-activity relationships for platelet-activating factor (PAF) and analogues reveal differences between PAF receptors on platelets and macrophages. J Lipid Mediat. 1991, 4 (3): 299-308.PubMed
32.
go back to reference Terashita Z, Imura Y, Takatani M, Tsushima S, Nishikawa K: CV-6209, a highly potent antagonist of platelet activating factor in vitro and in vivo. J Pharmacol Exp Ther. 1987, 242 (1): 263-268.PubMed Terashita Z, Imura Y, Takatani M, Tsushima S, Nishikawa K: CV-6209, a highly potent antagonist of platelet activating factor in vitro and in vivo. J Pharmacol Exp Ther. 1987, 242 (1): 263-268.PubMed
33.
go back to reference Kopp UC, Cicha MZ, Nakamura K, Nusing RM, Smith LA, Hokfelt T: Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. AmJPhysiol Renal Physiol. 2004, 287 (6): F1269-F1282. 10.1152/ajprenal.00230.2004.CrossRef Kopp UC, Cicha MZ, Nakamura K, Nusing RM, Smith LA, Hokfelt T: Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. AmJPhysiol Renal Physiol. 2004, 287 (6): F1269-F1282. 10.1152/ajprenal.00230.2004.CrossRef
34.
go back to reference McGeer PL, Schulzer M, McGeer EG: Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology. 1996, 47 (2): 425-432.CrossRefPubMed McGeer PL, Schulzer M, McGeer EG: Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology. 1996, 47 (2): 425-432.CrossRefPubMed
35.
go back to reference Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C: Postsynaptically Synthesized Prostaglandin E2 (PGE2) Modulates Hippocampal Synaptic Transmission via a Presynaptic PGE2 EP2 Receptor. J Neuroscience. 2005, 25 (43): 9858-9870. 10.1523/JNEUROSCI.2392-05.2005.CrossRefPubMed Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C: Postsynaptically Synthesized Prostaglandin E2 (PGE2) Modulates Hippocampal Synaptic Transmission via a Presynaptic PGE2 EP2 Receptor. J Neuroscience. 2005, 25 (43): 9858-9870. 10.1523/JNEUROSCI.2392-05.2005.CrossRefPubMed
36.
go back to reference Takadera T, Yumoto H, Tozuka Y, Ohyashiki T: Prostaglandin E(2) induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett. 2002, 317 (2): 61-64. 10.1016/S0304-3940(01)02449-1.CrossRefPubMed Takadera T, Yumoto H, Tozuka Y, Ohyashiki T: Prostaglandin E(2) induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett. 2002, 317 (2): 61-64. 10.1016/S0304-3940(01)02449-1.CrossRefPubMed
37.
go back to reference Ding S, Dudley E, Plummer S, Tang J, Newton RP, Brenton AG: Quantitative determination of major active components in Ginkgo biloba dietary supplements by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2006, 20 (18): 2753-2760. 10.1002/rcm.2646.CrossRefPubMed Ding S, Dudley E, Plummer S, Tang J, Newton RP, Brenton AG: Quantitative determination of major active components in Ginkgo biloba dietary supplements by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2006, 20 (18): 2753-2760. 10.1002/rcm.2646.CrossRefPubMed
38.
go back to reference Walsh DM, Selkoe DJ: Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease. Neuron. 2004, 44 (1): 181-193. 10.1016/j.neuron.2004.09.010.CrossRefPubMed Walsh DM, Selkoe DJ: Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease. Neuron. 2004, 44 (1): 181-193. 10.1016/j.neuron.2004.09.010.CrossRefPubMed
39.
go back to reference Brewer GJ: Isolation and culture of adult rat hippocampal neurons. J Neurosci Meth. 1997, 71 (2): 143-155. 10.1016/S0165-0270(96)00136-7.CrossRef Brewer GJ: Isolation and culture of adult rat hippocampal neurons. J Neurosci Meth. 1997, 71 (2): 143-155. 10.1016/S0165-0270(96)00136-7.CrossRef
Metadata
Title
Ginkgolides protect against amyloid-β1–42-mediated synapse damage in vitro
Authors
Clive Bate
Mourad Tayebi
Alun Williams
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2008
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-3-1

Other articles of this Issue 1/2008

Molecular Neurodegeneration 1/2008 Go to the issue