Skip to main content
Top
Published in: Molecular Pain 1/2012

Open Access 01-12-2012 | Research

The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states

Authors: Keri K Tochiki, Joel Cunningham, Stephen P Hunt, Sandrine M Géranton

Published in: Molecular Pain | Issue 1/2012

Login to get access

Abstract

Background

DNA CpG methylation is carried out by DNA methyltransferases and induces chromatin remodeling and gene silencing through a transcription repressor complex comprising the methyl-CpG-binding protein 2 (MeCP2) and a subset of histone deacetylases. Recently, we have found that MeCP2 activity had a crucial role in the pattern of gene expression seen in the superficial dorsal horn rapidly after injection of Complete Freund's Adjuvant (CFA) in the rat ankle joint. The aim of the present study was to analyse the changes in expression of MeCP2, DNA methyltransferases and a subset of histone deacetylases in the superficial dorsal horn during the maintenance phase of persistent pain states. In this process, the cell specific expression of MeCP2 was also investigated.

Results

Using immunohistochemistry, we found that neurones, oligodendrocytes and astrocytes expressed MeCP2. Microglia, oligodendrocyte precursor cells and Schwann cells never showed any positive stain for MeCP2. Quantitative analyses showed that MeCP2 expression was increased in the superficial dorsal horn 7 days following CFA injection in the ankle joint but decreased 7 days following spared nerve injury. Overall, the expression of DNA methyltransferases and a subset of histone deacetylases followed the same pattern of expression. However, there were no significant changes in the expression of the MeCP2 targets that we had previously shown are regulated in the early time points following CFA injection in the ankle joint. Finally, the expression of MeCP2 was also down regulated in damaged dorsal root ganglion neurones following spared nerve injury.

Conclusion

Our results strongly suggest that changes in chromatin compaction, regulated by the binding of MeCP2 complexes to methylated DNA, are involved in the modulation of gene expression in the superficial dorsal horn and dorsal root ganglia during the maintenance of persistent pain states.
Appendix
Available only for authorised users
Literature
1.
go back to reference Valder CR, Liu JJ, Song YH, Luo ZD: Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development. J Neurochem 2003, 87: 560–573. 10.1046/j.1471-4159.2003.02016.xCrossRefPubMed Valder CR, Liu JJ, Song YH, Luo ZD: Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development. J Neurochem 2003, 87: 560–573. 10.1046/j.1471-4159.2003.02016.xCrossRefPubMed
2.
go back to reference Vega-Avelaira D, Geranton SM, Fitzgerald M: Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury. Mol Pain 2009, 5: 70. 10.1186/1744-8069-5-70PubMedCentralCrossRefPubMed Vega-Avelaira D, Geranton SM, Fitzgerald M: Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury. Mol Pain 2009, 5: 70. 10.1186/1744-8069-5-70PubMedCentralCrossRefPubMed
3.
go back to reference Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, et al.: Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA 2002, 99: 8360–8365. 10.1073/pnas.122231899PubMedCentralCrossRefPubMed Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, et al.: Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA 2002, 99: 8360–8365. 10.1073/pnas.122231899PubMedCentralCrossRefPubMed
4.
go back to reference Yang HY, Mitchell K, Keller JM, Iadarola MJ: Peripheral inflammation increases Scya2 expression in sensory ganglia and cytokine and endothelial related gene expression in inflamed tissue. J Neurochem 2007, 103: 1628–1643. 10.1111/j.1471-4159.2007.04874.xCrossRefPubMed Yang HY, Mitchell K, Keller JM, Iadarola MJ: Peripheral inflammation increases Scya2 expression in sensory ganglia and cytokine and endothelial related gene expression in inflamed tissue. J Neurochem 2007, 103: 1628–1643. 10.1111/j.1471-4159.2007.04874.xCrossRefPubMed
5.
go back to reference Geranton SM, Morenilla-Palao C, Hunt SP: A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J Neurosci 2007, 27: 6163–6173. 10.1523/JNEUROSCI.1306-07.2007CrossRefPubMed Geranton SM, Morenilla-Palao C, Hunt SP: A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J Neurosci 2007, 27: 6163–6173. 10.1523/JNEUROSCI.1306-07.2007CrossRefPubMed
6.
go back to reference Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, et al.: Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 2007, 27: 8699–8708. 10.1523/JNEUROSCI.2018-07.2007CrossRefPubMed Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, et al.: Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 2007, 27: 8699–8708. 10.1523/JNEUROSCI.2018-07.2007CrossRefPubMed
7.
go back to reference Lacroix-Fralish ML, Tawfik VL, Tanga FY, Spratt KF, DeLeo JA: Differential spinal cord gene expression in rodent models of radicular and neuropathic pain. Anesthesiology 2006, 104: 1283–1292. 10.1097/00000542-200606000-00025CrossRefPubMed Lacroix-Fralish ML, Tawfik VL, Tanga FY, Spratt KF, DeLeo JA: Differential spinal cord gene expression in rodent models of radicular and neuropathic pain. Anesthesiology 2006, 104: 1283–1292. 10.1097/00000542-200606000-00025CrossRefPubMed
8.
go back to reference Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al.: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393: 386–389. 10.1038/30764CrossRefPubMed Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al.: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393: 386–389. 10.1038/30764CrossRefPubMed
10.
go back to reference Bai G, Wei D, Zou S, Ren K, Dubner R: Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 2010, 6: 51. 10.1186/1744-8069-6-51PubMedCentralCrossRefPubMed Bai G, Wei D, Zou S, Ren K, Dubner R: Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 2010, 6: 51. 10.1186/1744-8069-6-51PubMedCentralCrossRefPubMed
11.
go back to reference Geranton SM, Tochiki KK, Chiu WW, Stuart SA, Hunt SP: Injury induced activation of extracellular signal-regulated kinase (ERK) in the rat rostral ventromedial medulla (RVM) is age dependant and requires the lamina I projection pathway. Mol Pain 2010, 6: 54. 10.1186/1744-8069-6-54PubMedCentralCrossRefPubMed Geranton SM, Tochiki KK, Chiu WW, Stuart SA, Hunt SP: Injury induced activation of extracellular signal-regulated kinase (ERK) in the rat rostral ventromedial medulla (RVM) is age dependant and requires the lamina I projection pathway. Mol Pain 2010, 6: 54. 10.1186/1744-8069-6-54PubMedCentralCrossRefPubMed
12.
go back to reference Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87: 149–158. 10.1016/S0304-3959(00)00276-1CrossRefPubMed Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87: 149–158. 10.1016/S0304-3959(00)00276-1CrossRefPubMed
13.
go back to reference Geranton SM, Fratto V, Tochiki KK, Hunt SP: Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Mol Pain 2008, 4: 35. 10.1186/1744-8069-4-35PubMedCentralCrossRefPubMed Geranton SM, Fratto V, Tochiki KK, Hunt SP: Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Mol Pain 2008, 4: 35. 10.1186/1744-8069-4-35PubMedCentralCrossRefPubMed
14.
go back to reference Ballas N, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 2009, 12: 311–317. 10.1038/nn.2275PubMedCentralCrossRefPubMed Ballas N, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 2009, 12: 311–317. 10.1038/nn.2275PubMedCentralCrossRefPubMed
15.
go back to reference Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW: Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009, 29: 5051–5061. 10.1523/JNEUROSCI.0324-09.2009PubMedCentralCrossRefPubMed Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW: Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009, 29: 5051–5061. 10.1523/JNEUROSCI.0324-09.2009PubMedCentralCrossRefPubMed
16.
go back to reference Maezawa I, Jin LW: Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 2010, 30: 5346–5356. 10.1523/JNEUROSCI.5966-09.2010CrossRefPubMed Maezawa I, Jin LW: Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 2010, 30: 5346–5356. 10.1523/JNEUROSCI.5966-09.2010CrossRefPubMed
17.
go back to reference Nagai K, Miyake K, Kubota T: A transcriptional repressor MeCP2 causing Rett syndrome is expressed in embryonic non-neuronal cells and controls their growth. Brain Res Dev Brain Res 2005, 157: 103–106.CrossRefPubMed Nagai K, Miyake K, Kubota T: A transcriptional repressor MeCP2 causing Rett syndrome is expressed in embryonic non-neuronal cells and controls their growth. Brain Res Dev Brain Res 2005, 157: 103–106.CrossRefPubMed
18.
go back to reference Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, et al.: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010, 37: 457–468. 10.1016/j.molcel.2010.01.030PubMedCentralCrossRefPubMed Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, et al.: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010, 37: 457–468. 10.1016/j.molcel.2010.01.030PubMedCentralCrossRefPubMed
22.
go back to reference Nakagawa T, Kaneko S: Spinal astrocytes as therapeutic targets for pathological pain. J Pharmacol Sci 2010, 114: 347–353. 10.1254/jphs.10R04CPCrossRefPubMed Nakagawa T, Kaneko S: Spinal astrocytes as therapeutic targets for pathological pain. J Pharmacol Sci 2010, 114: 347–353. 10.1254/jphs.10R04CPCrossRefPubMed
23.
go back to reference Svensson CI, Brodin E: Spinal astrocytes in pain processing: non-neuronal cells as therapeutic targets. Mol Interv 2010, 10: 25–38. 10.1124/mi.10.1.6CrossRefPubMed Svensson CI, Brodin E: Spinal astrocytes in pain processing: non-neuronal cells as therapeutic targets. Mol Interv 2010, 10: 25–38. 10.1124/mi.10.1.6CrossRefPubMed
24.
go back to reference Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al.: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021. 10.1038/nature04223CrossRefPubMed Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al.: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021. 10.1038/nature04223CrossRefPubMed
25.
26.
go back to reference Smith HS: Activated microglia in nociception. Pain Physician 2010, 13: 295–304.PubMed Smith HS: Activated microglia in nociception. Pain Physician 2010, 13: 295–304.PubMed
27.
go back to reference Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, et al.: A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 2004, 36: 339–341. 10.1038/ng1327CrossRefPubMed Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, et al.: A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 2004, 36: 339–341. 10.1038/ng1327CrossRefPubMed
28.
go back to reference Dragich JM, Kim YH, Arnold AP, Schanen NC: Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol 2007, 501: 526–542. 10.1002/cne.21264CrossRefPubMed Dragich JM, Kim YH, Arnold AP, Schanen NC: Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol 2007, 501: 526–542. 10.1002/cne.21264CrossRefPubMed
29.
go back to reference Cassel S, Carouge D, Gensburger C, Anglard P, Burgun C, Dietrich JB, et al.: Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 2006, 70: 487–492. 10.1124/mol.106.022301CrossRefPubMed Cassel S, Carouge D, Gensburger C, Anglard P, Burgun C, Dietrich JB, et al.: Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 2006, 70: 487–492. 10.1124/mol.106.022301CrossRefPubMed
30.
go back to reference Zoghbi HY: Rett syndrome: what do we know for sure? Nat Neurosci 2009, 12: 239–240. 10.1038/nn0309-239CrossRefPubMed Zoghbi HY: Rett syndrome: what do we know for sure? Nat Neurosci 2009, 12: 239–240. 10.1038/nn0309-239CrossRefPubMed
31.
go back to reference Kishi N, Macklis JD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 2004, 27: 306–321. 10.1016/j.mcn.2004.07.006CrossRefPubMed Kishi N, Macklis JD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 2004, 27: 306–321. 10.1016/j.mcn.2004.07.006CrossRefPubMed
32.
go back to reference Mullaney BC, Johnston MV, Blue ME: Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 2004, 123: 939–949. 10.1016/j.neuroscience.2003.11.025CrossRefPubMed Mullaney BC, Johnston MV, Blue ME: Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 2004, 123: 939–949. 10.1016/j.neuroscience.2003.11.025CrossRefPubMed
33.
go back to reference Setoguchi H, Namihira M, Kohyama J, Asano H, Sanosaka T, Nakashima K: Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 2006, 84: 969–979. 10.1002/jnr.21001CrossRefPubMed Setoguchi H, Namihira M, Kohyama J, Asano H, Sanosaka T, Nakashima K: Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 2006, 84: 969–979. 10.1002/jnr.21001CrossRefPubMed
34.
go back to reference Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY: Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002, 11: 115–124. 10.1093/hmg/11.2.115CrossRefPubMed Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY: Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002, 11: 115–124. 10.1093/hmg/11.2.115CrossRefPubMed
35.
go back to reference Schmid RS, Tsujimoto N, Qu Q, Lei H, Li E, Chen T, et al.: A methyl-CpG-binding protein 2-enhanced green fluorescent protein reporter mouse model provides a new tool for studying the neuronal basis of Rett syndrome. Neuroreport 2008, 19: 393–398. 10.1097/WNR.0b013e3282f5661cCrossRefPubMed Schmid RS, Tsujimoto N, Qu Q, Lei H, Li E, Chen T, et al.: A methyl-CpG-binding protein 2-enhanced green fluorescent protein reporter mouse model provides a new tool for studying the neuronal basis of Rett syndrome. Neuroreport 2008, 19: 393–398. 10.1097/WNR.0b013e3282f5661cCrossRefPubMed
36.
go back to reference Geranton SM, Tochiki KK, Hunt SP: Changes in epigenetic machinery in the superficial dorsal horn correlate with the pattern of gene expression that follows the development of joint inflammation. Abstract 381.08 SFN 2011. 2012. Ref Type: Abstract Geranton SM, Tochiki KK, Hunt SP: Changes in epigenetic machinery in the superficial dorsal horn correlate with the pattern of gene expression that follows the development of joint inflammation. Abstract 381.08 SFN 2011. 2012. Ref Type: Abstract
37.
go back to reference Lacroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS: Patterns of pain: Meta-analysis of microarray studies of pain. Pain 2011, 152: 1888–1898. 10.1016/j.pain.2011.04.014CrossRefPubMed Lacroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS: Patterns of pain: Meta-analysis of microarray studies of pain. Pain 2011, 152: 1888–1898. 10.1016/j.pain.2011.04.014CrossRefPubMed
38.
39.
go back to reference Decaris E, Guingamp C, Chat M, Philippe L, Grillasca JP, Abid A, et al.: Evidence for neurogenic transmission inducing degenerative cartilage damage distant from local inflammation. Arthritis Rheum 1999, 42: 1951–1960. 10.1002/1529-0131(199909)42:9<1951::AID-ANR22>3.0.CO;2-DCrossRefPubMed Decaris E, Guingamp C, Chat M, Philippe L, Grillasca JP, Abid A, et al.: Evidence for neurogenic transmission inducing degenerative cartilage damage distant from local inflammation. Arthritis Rheum 1999, 42: 1951–1960. 10.1002/1529-0131(199909)42:9<1951::AID-ANR22>3.0.CO;2-DCrossRefPubMed
40.
go back to reference Donaldson LF, Seckl JR, McQueen DS: A discrete adjuvant-induced monoarthritis in the rat: effects of adjuvant dose. J Neurosci Methods 1993, 49: 5–10. 10.1016/0165-0270(93)90103-XCrossRefPubMed Donaldson LF, Seckl JR, McQueen DS: A discrete adjuvant-induced monoarthritis in the rat: effects of adjuvant dose. J Neurosci Methods 1993, 49: 5–10. 10.1016/0165-0270(93)90103-XCrossRefPubMed
41.
go back to reference Kelly S, Dunham JP, Donaldson LF: Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur J Neurosci 2007, 26: 935–942. 10.1111/j.1460-9568.2007.05737.xPubMedCentralCrossRefPubMed Kelly S, Dunham JP, Donaldson LF: Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur J Neurosci 2007, 26: 935–942. 10.1111/j.1460-9568.2007.05737.xPubMedCentralCrossRefPubMed
42.
go back to reference Costigan M, Befort K, Karchewski L, Griffin RS, D'Urso D, Allchorne A, et al.: Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002, 3: 16. 10.1186/1471-2202-3-16PubMedCentralCrossRefPubMed Costigan M, Befort K, Karchewski L, Griffin RS, D'Urso D, Allchorne A, et al.: Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002, 3: 16. 10.1186/1471-2202-3-16PubMedCentralCrossRefPubMed
43.
go back to reference Bai G, Guo W, Wei D, Zou S, Ren K, Dubner R: The role of spinal de novo DNA methylation in the development of inflammatory pain. Abstract 468.10 SFN 2008. 2008. Ref Type: Abstract Bai G, Guo W, Wei D, Zou S, Ren K, Dubner R: The role of spinal de novo DNA methylation in the development of inflammatory pain. Abstract 468.10 SFN 2008. 2008. Ref Type: Abstract
44.
go back to reference Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RW, et al.: Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 2009, 75: 1014–1020. 10.1124/mol.108.054346CrossRefPubMed Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RW, et al.: Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 2009, 75: 1014–1020. 10.1124/mol.108.054346CrossRefPubMed
45.
go back to reference Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, et al.: Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 2011, 14: 1345–1351. 10.1038/nn.2900PubMedCentralCrossRefPubMed Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, et al.: Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 2011, 14: 1345–1351. 10.1038/nn.2900PubMedCentralCrossRefPubMed
46.
go back to reference Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, et al.: A role for glia in the progression of Rett's syndrome. Nature 2011, 475: 497–500. 10.1038/nature10214PubMedCentralCrossRefPubMed Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, et al.: A role for glia in the progression of Rett's syndrome. Nature 2011, 475: 497–500. 10.1038/nature10214PubMedCentralCrossRefPubMed
47.
go back to reference Jimenez-Diaz L, Geranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, et al.: Local translation in primary afferent fibers regulates nociception. PLoS One 2008, 3: e1961. 10.1371/journal.pone.0001961PubMedCentralCrossRefPubMed Jimenez-Diaz L, Geranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, et al.: Local translation in primary afferent fibers regulates nociception. PLoS One 2008, 3: e1961. 10.1371/journal.pone.0001961PubMedCentralCrossRefPubMed
Metadata
Title
The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states
Authors
Keri K Tochiki
Joel Cunningham
Stephen P Hunt
Sandrine M Géranton
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2012
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-8-14

Other articles of this Issue 1/2012

Molecular Pain 1/2012 Go to the issue