Skip to main content
Top
Published in: Molecular Pain 1/2005

Open Access 01-12-2005 | Research

Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

Authors: Kohei Koga, Hidemasa Furue, Md Harunor Rashid, Atsushi Takaki, Toshihiko Katafuchi, Megumu Yoshimura

Published in: Molecular Pain | Issue 1/2005

Login to get access

Abstract

Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG) neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250), whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000) was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three stimulus frequencies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nakatsuka T, Park JS, Kumamoto E, Tamaki T, Yoshimura M: Plastic changes in sensory inputs to rat substantia gelatinosa neurons following peripheral inflammation. Pain 1999, 82: 39–47. 10.1016/S0304-3959(99)00037-8PubMedCrossRef Nakatsuka T, Park JS, Kumamoto E, Tamaki T, Yoshimura M: Plastic changes in sensory inputs to rat substantia gelatinosa neurons following peripheral inflammation. Pain 1999, 82: 39–47. 10.1016/S0304-3959(99)00037-8PubMedCrossRef
2.
go back to reference Okamoto M, Baba H, Goldstein PA, Higashi H, Shimoji K, Yoshimura M: Functional reorganization of sensory pathways in the rat spinal dorsal horn following peripheral nerve injury. J Physiol 2001,532(1):241–250. 10.1111/j.1469-7793.2001.0241g.xPubMedCentralPubMedCrossRef Okamoto M, Baba H, Goldstein PA, Higashi H, Shimoji K, Yoshimura M: Functional reorganization of sensory pathways in the rat spinal dorsal horn following peripheral nerve injury. J Physiol 2001,532(1):241–250. 10.1111/j.1469-7793.2001.0241g.xPubMedCentralPubMedCrossRef
3.
go back to reference Woolf CJ, Shortland P, Coggeshall RE: Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992, 355: 75–78. 10.1038/355075a0PubMedCrossRef Woolf CJ, Shortland P, Coggeshall RE: Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992, 355: 75–78. 10.1038/355075a0PubMedCrossRef
4.
go back to reference Baquis GD: Technology review: the neurometer® current perception threshold (CPT). Muscle Nerve 1999, 22: 523–531. 10.1002/(SICI)1097-4598(199904)22:4<523::AID-MUS16>3.0.CO;2-1CrossRef Baquis GD: Technology review: the neurometer® current perception threshold (CPT). Muscle Nerve 1999, 22: 523–531. 10.1002/(SICI)1097-4598(199904)22:4<523::AID-MUS16>3.0.CO;2-1CrossRef
5.
go back to reference Dinh S, Marroquin E, Raj PP: Neuroselective quantification of allodynia by current perception threshold evaluation on CRPS (RSD) patients. Reg Anesth 1997,22(2S):44. Dinh S, Marroquin E, Raj PP: Neuroselective quantification of allodynia by current perception threshold evaluation on CRPS (RSD) patients. Reg Anesth 1997,22(2S):44.
6.
go back to reference Katims JJ, Naviasky EH, Ng LKY, Rendell M, Bleecker ML: New screening device for assessment of peripheral neuropathy. J Occup Med 1986, 28: 1219–1221.PubMed Katims JJ, Naviasky EH, Ng LKY, Rendell M, Bleecker ML: New screening device for assessment of peripheral neuropathy. J Occup Med 1986, 28: 1219–1221.PubMed
7.
go back to reference Masson EA, Veves A, Fernando D, Boulton AJM: Current perception thresholds: a new, quick, and reproducible method for the assessment of peripheral neuropathy in diabetes mellitus. Diabetologia 1989, 32: 724–728. 10.1007/BF00274531PubMedCrossRef Masson EA, Veves A, Fernando D, Boulton AJM: Current perception thresholds: a new, quick, and reproducible method for the assessment of peripheral neuropathy in diabetes mellitus. Diabetologia 1989, 32: 724–728. 10.1007/BF00274531PubMedCrossRef
8.
go back to reference Nishimura A, Ogura T, Hase H, Makinodan A, Hojo T, Katsumi Y, Yagi K, Mikami Y, Kubo T: A correlative electrophysiologic study of nerve fiber involvement in carpal tunnel syndrome using current perception thresholds. Clinical Neurophysiol 2004,115(8):1921–1924. 10.1016/j.clinph.2004.03.022CrossRef Nishimura A, Ogura T, Hase H, Makinodan A, Hojo T, Katsumi Y, Yagi K, Mikami Y, Kubo T: A correlative electrophysiologic study of nerve fiber involvement in carpal tunnel syndrome using current perception thresholds. Clinical Neurophysiol 2004,115(8):1921–1924. 10.1016/j.clinph.2004.03.022CrossRef
9.
go back to reference Suzuki K, Chung Y, Kobayashi Y, Goto Y: Current perception threshold: A new method for the assessment of peripheral sensory neuropathy in diabetes mellitus. Peripher Nerve 1995, 6: 63. Suzuki K, Chung Y, Kobayashi Y, Goto Y: Current perception threshold: A new method for the assessment of peripheral sensory neuropathy in diabetes mellitus. Peripher Nerve 1995, 6: 63.
10.
go back to reference Kiso T, Nagakura Y, Toya T, Matsumoto N, Tamura S, Ito H, Okada M, Yamaguchi T: Neurometer measurement of current stimulus threshold in rats. J Pharmacol Exp Ther 2001, 297: 352–356.PubMed Kiso T, Nagakura Y, Toya T, Matsumoto N, Tamura S, Ito H, Okada M, Yamaguchi T: Neurometer measurement of current stimulus threshold in rats. J Pharmacol Exp Ther 2001, 297: 352–356.PubMed
11.
go back to reference Liu S, Kopacz DJ, Carpenter RL: Quantitative assessment of differential sensory nerve block after lidocaine spinal anesthesia. Anesthesiology 1995, 82: 60–63. 10.1097/00000542-199501000-00009PubMedCrossRef Liu S, Kopacz DJ, Carpenter RL: Quantitative assessment of differential sensory nerve block after lidocaine spinal anesthesia. Anesthesiology 1995, 82: 60–63. 10.1097/00000542-199501000-00009PubMedCrossRef
12.
go back to reference Oda M, Kitagawa N, Yang BX, Totoki T, Morimoto M: Quantitative and fiber-selective evaluation of dose-dependent nerve blockade by intrathecal lidocaine in rats. J Pharmacol Exp Ther 2005,312(3):1132–1137. 10.1124/jpet.104.076893PubMedCrossRef Oda M, Kitagawa N, Yang BX, Totoki T, Morimoto M: Quantitative and fiber-selective evaluation of dose-dependent nerve blockade by intrathecal lidocaine in rats. J Pharmacol Exp Ther 2005,312(3):1132–1137. 10.1124/jpet.104.076893PubMedCrossRef
13.
go back to reference Ataka T, Kumamoto E, Shimoji K, Yoshimura M: Baclofen inhibits more effectively C-afferent than Aδ-afferent glutamatergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Pain 2000, 86: 273–282. 10.1016/S0304-3959(00)00255-4PubMedCrossRef Ataka T, Kumamoto E, Shimoji K, Yoshimura M: Baclofen inhibits more effectively C-afferent than Aδ-afferent glutamatergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Pain 2000, 86: 273–282. 10.1016/S0304-3959(00)00255-4PubMedCrossRef
14.
15.
go back to reference Harper AA, Lawson SN: Electrical properties of rat dorsal root ganglion neurons with different peripheral nerve conduction velocities. J Physiol 1985, 359: 47–63.PubMedCentralPubMedCrossRef Harper AA, Lawson SN: Electrical properties of rat dorsal root ganglion neurons with different peripheral nerve conduction velocities. J Physiol 1985, 359: 47–63.PubMedCentralPubMedCrossRef
16.
go back to reference Prabhaker E, Lawson SN: The electrophysiological properties of rat primary afferent neurones with carbonic anhydrase activity. J Physiol 1995,482(3):609–622.CrossRef Prabhaker E, Lawson SN: The electrophysiological properties of rat primary afferent neurones with carbonic anhydrase activity. J Physiol 1995,482(3):609–622.CrossRef
17.
go back to reference Villiere V, McLachlan EM: Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 1996,76(3):1924–1941.PubMed Villiere V, McLachlan EM: Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 1996,76(3):1924–1941.PubMed
18.
go back to reference Kumazawa T, Perl ER: Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization. J Comp Neur 1978, 177: 417–434. 10.1002/cne.901770305PubMedCrossRef Kumazawa T, Perl ER: Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization. J Comp Neur 1978, 177: 417–434. 10.1002/cne.901770305PubMedCrossRef
19.
go back to reference Sugiura Y, Lee CL, Perl ER: Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986, 234: 358–361.PubMedCrossRef Sugiura Y, Lee CL, Perl ER: Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986, 234: 358–361.PubMedCrossRef
20.
go back to reference Yoshimura M, Jessell TM: Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol 1989, 62: 96–108.PubMed Yoshimura M, Jessell TM: Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol 1989, 62: 96–108.PubMed
21.
go back to reference Furue H, Katafuchi T, Yoshimura M: Sensory processing and functional reorganization of sensory transmission under pathological conditions in the spinal dorsal horn. Neurosci Res 2004, 48: 361–368. 10.1016/j.neures.2003.12.005PubMedCrossRef Furue H, Katafuchi T, Yoshimura M: Sensory processing and functional reorganization of sensory transmission under pathological conditions in the spinal dorsal horn. Neurosci Res 2004, 48: 361–368. 10.1016/j.neures.2003.12.005PubMedCrossRef
22.
go back to reference Furue H, Narikawa K, Kumamoto E, Yoshimura M: Responsiveness of rat substantia gelatinosa neurons to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. J Physiol 1999,521(2):529–535. 10.1111/j.1469-7793.1999.00529.xPubMedCentralPubMedCrossRef Furue H, Narikawa K, Kumamoto E, Yoshimura M: Responsiveness of rat substantia gelatinosa neurons to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. J Physiol 1999,521(2):529–535. 10.1111/j.1469-7793.1999.00529.xPubMedCentralPubMedCrossRef
23.
go back to reference Narikawa K, Furue H, Kumamoto E, Yoshimura M: In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 2000, 84: 2171–2174.PubMed Narikawa K, Furue H, Kumamoto E, Yoshimura M: In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 2000, 84: 2171–2174.PubMed
24.
go back to reference Sonohata M, Furue H, Katafuchi T, Yasaka T, Doi A, Kumamoto E, Yoshimura M: Actions of noradrenaline on substantia geltatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J Physiol 2003,555(2):515–526. 10.1113/jphysiol.2003.054932PubMedCentralPubMedCrossRef Sonohata M, Furue H, Katafuchi T, Yasaka T, Doi A, Kumamoto E, Yoshimura M: Actions of noradrenaline on substantia geltatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J Physiol 2003,555(2):515–526. 10.1113/jphysiol.2003.054932PubMedCentralPubMedCrossRef
25.
go back to reference Magerl W, Fuchs PN, Meyer RA, Treede RD: Role of capsaicin-sensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 2001, 124: 1754–1764. 10.1093/brain/124.9.1754PubMedCrossRef Magerl W, Fuchs PN, Meyer RA, Treede RD: Role of capsaicin-sensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 2001, 124: 1754–1764. 10.1093/brain/124.9.1754PubMedCrossRef
26.
go back to reference Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, Waxman SG: Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol 1999, 82: 2776–2785.PubMed Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, Waxman SG: Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol 1999, 82: 2776–2785.PubMed
27.
go back to reference Cummins TR, Waxman SG: Down-regulation of TTX-resistant sodium currents and upregulation of a rapidly repriming TTX-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 1997, 17: 3503–3514.PubMed Cummins TR, Waxman SG: Down-regulation of TTX-resistant sodium currents and upregulation of a rapidly repriming TTX-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 1997, 17: 3503–3514.PubMed
28.
go back to reference Elliott AA, Elliott JR: Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 1993, 463: 39–56.PubMedCentralPubMedCrossRef Elliott AA, Elliott JR: Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 1993, 463: 39–56.PubMedCentralPubMedCrossRef
29.
go back to reference Everill B, Cummins TR, Waxman SG, Kocsis JD: Sodium currents of large (Aβ-type) adult cutaneous afferent dorsal root ganglion neurons display rapid recovery from inactivation before and after axotomy. Neuroscience 2001, 106: 161–169. 10.1016/S0306-4522(01)00258-5PubMedCentralPubMedCrossRef Everill B, Cummins TR, Waxman SG, Kocsis JD: Sodium currents of large (Aβ-type) adult cutaneous afferent dorsal root ganglion neurons display rapid recovery from inactivation before and after axotomy. Neuroscience 2001, 106: 161–169. 10.1016/S0306-4522(01)00258-5PubMedCentralPubMedCrossRef
30.
go back to reference Shepherd GM: Electronic Properties of Axon and Dendrites. In Fundamental Neuroscience. 2nd edition. Edited by: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ. San Diego: Academic Press; 1999:115–137. Shepherd GM: Electronic Properties of Axon and Dendrites. In Fundamental Neuroscience. 2nd edition. Edited by: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ. San Diego: Academic Press; 1999:115–137.
31.
go back to reference Handwerker HO, Anton F, Reeh PW: Discharge patterns of afferent cutaneous nerve fibers from the rat's tail during prolonged noxious mechanical stimulation. Exp Brain Res 1987,65(3):493–504. 10.1007/BF00235972PubMedCrossRef Handwerker HO, Anton F, Reeh PW: Discharge patterns of afferent cutaneous nerve fibers from the rat's tail during prolonged noxious mechanical stimulation. Exp Brain Res 1987,65(3):493–504. 10.1007/BF00235972PubMedCrossRef
32.
go back to reference Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 2003,550(3):739–752. 10.1113/jphysiol.2003.042127PubMedCentralPubMedCrossRef Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 2003,550(3):739–752. 10.1113/jphysiol.2003.042127PubMedCentralPubMedCrossRef
Metadata
Title
Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation
Authors
Kohei Koga
Hidemasa Furue
Md Harunor Rashid
Atsushi Takaki
Toshihiko Katafuchi
Megumu Yoshimura
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2005
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-1-13

Other articles of this Issue 1/2005

Molecular Pain 1/2005 Go to the issue