Skip to main content
Top
Published in: Nutrition & Metabolism 1/2011

Open Access 01-12-2011 | Research

Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats

Authors: Ji Young Jung, Yeni Lim, Min Sun Moon, Ji Yeon Kim, Oran Kwon

Published in: Nutrition & Metabolism | Issue 1/2011

Login to get access

Abstract

Background

Quercetin derivatives in onions have been regarded as the most important flavonoids to improve diabetic status in cells and animal models. The present study was aimed to examine the hypoglycemic and insulin-sensitizing capacity of onion peel extract (OPE) containing high quercetin in high fat diet/streptozotocin-induced diabetic rats and to elucidate the mechanism of its insulin-sensitizing effect.

Methods

Male Sprague-Dawley rats were fed the AIN-93G diet modified to contain 41.2% fat and intraperitoneally injected with a single dose of streptozotocin (40 mg/kg body weight). One week after injection, the rats with fasting blood glucose levels above 126 mg/dL were randomly divided into 4 groups to treat with high fat diet containing 0 (diabetic control), 0.5, or 1% of OPE or 0.1% quercetin (quercetin equivalent to 1% of OPE) for 8 weeks. To investigate the mechanism for the effects of OPE, we examined biochemical parameters (insulin sensitivity and oxidative stresses) and protein and gene expressions (pro-inflammatory cytokines and receptors).

Results

Compared to the diabetic control, hypoglycemic and insulin-sensitizing capability of 1% OPE were demonstrated by significant improvement of glucose tolerance as expressed in incremental area under the curve (P = 0.0148). The insulin-sensitizing effect of OPE was further supported by increased glycogen levels in liver and skeletal muscle (P < 0.0001 and P = 0.0089, respectively). Quantitative RT-PCR analysis showed increased expression of insulin receptor (P = 0.0408) and GLUT4 (P = 0.0346) in muscle tissues. The oxidative stress, as assessed by superoxide dismutase activity and malondialdehyde formation, plasma free fatty acids, and hepatic protein expressions of IL-6 were significantly reduced by 1% OPE administration (P = 0.0393, 0.0237, 0.0148 and 0.0025, respectively).

Conclusion

OPE might improve glucose response and insulin resistance associated with type 2 diabetes by alleviating metabolic dysregulation of free fatty acids, suppressing oxidative stress, up-regulating glucose uptake at peripheral tissues, and/or down-regulating inflammatory gene expression in liver. Moreover, in most cases, OPE showed greater potency than pure quercetin equivalent. These findings provide a basis for the use of onion peel to improve insulin insensitivity in type 2 diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes. Diabetes Care. 2004, 27: 1047-1053. 10.2337/diacare.27.5.1047.CrossRef Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes. Diabetes Care. 2004, 27: 1047-1053. 10.2337/diacare.27.5.1047.CrossRef
2.
go back to reference Panda S, Kar A: Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors. 2007, 31: 201-210. 10.1002/biof.5520310307.CrossRef Panda S, Kar A: Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors. 2007, 31: 201-210. 10.1002/biof.5520310307.CrossRef
3.
go back to reference Aslan M, Deliorman Orhan D, Orhan N, Sezik E, Yesilada E: In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J Ethnopharmacol. 2007, 109: 54-59. 10.1016/j.jep.2006.07.001.CrossRef Aslan M, Deliorman Orhan D, Orhan N, Sezik E, Yesilada E: In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J Ethnopharmacol. 2007, 109: 54-59. 10.1016/j.jep.2006.07.001.CrossRef
4.
go back to reference Cunha WR, Arantes GM, Ferreira DS, Lucarini R, Silva ML, Furtado NA, da Silva Filho AA, Crotti AE, Araujo AR: Hypoglicemic Effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia. 2008, 79: 356-360. 10.1016/j.fitote.2008.04.002.CrossRef Cunha WR, Arantes GM, Ferreira DS, Lucarini R, Silva ML, Furtado NA, da Silva Filho AA, Crotti AE, Araujo AR: Hypoglicemic Effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia. 2008, 79: 356-360. 10.1016/j.fitote.2008.04.002.CrossRef
5.
go back to reference Babu PS, Srinivasan K: Influence of dietary capsaicin and onion on the metabolic abnormalities associated with streptozotocin induced diabetes mellitus. Mol Cell Biochem. 1997, 175: 49-57. 10.1023/A:1006881027166.CrossRef Babu PS, Srinivasan K: Influence of dietary capsaicin and onion on the metabolic abnormalities associated with streptozotocin induced diabetes mellitus. Mol Cell Biochem. 1997, 175: 49-57. 10.1023/A:1006881027166.CrossRef
6.
go back to reference Stumvoll M, Goldstein BJ, van Haeften TW: Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005, 365: 1333-1346. 10.1016/S0140-6736(05)61032-X.CrossRef Stumvoll M, Goldstein BJ, van Haeften TW: Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005, 365: 1333-1346. 10.1016/S0140-6736(05)61032-X.CrossRef
7.
go back to reference Kook S, Kim GH, Choi K: The antidiabetic effect of onion and garlic in experimental diabetic rats: meta-analysis. J Med Food. 2009, 12: 552-560. 10.1089/jmf.2008.1071.CrossRef Kook S, Kim GH, Choi K: The antidiabetic effect of onion and garlic in experimental diabetic rats: meta-analysis. J Med Food. 2009, 12: 552-560. 10.1089/jmf.2008.1071.CrossRef
8.
go back to reference Shetty A, Rashmi R, Rajan M, Sambaiah K, Salimath P: Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutr Res. 2004, 24: 373-381. 10.1016/j.nutres.2003.11.010.CrossRef Shetty A, Rashmi R, Rajan M, Sambaiah K, Salimath P: Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutr Res. 2004, 24: 373-381. 10.1016/j.nutres.2003.11.010.CrossRef
9.
go back to reference Matsui T, Ogunwande LA, Abesundara KJM, Matsumoto K: Antihyperglycemic potential of natural products. Mini-Rev Med Chem. 2006, 6: 109-120. 10.2174/138955706776073484.CrossRef Matsui T, Ogunwande LA, Abesundara KJM, Matsumoto K: Antihyperglycemic potential of natural products. Mini-Rev Med Chem. 2006, 6: 109-120. 10.2174/138955706776073484.CrossRef
10.
go back to reference Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, Gonzalez-Gallego J: Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 2005, 135: 2299-2304. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, Gonzalez-Gallego J: Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 2005, 135: 2299-2304.
11.
go back to reference Mahesh T, Menon VP: Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother Res. 2004, 18: 123-127. 10.1002/ptr.1374.CrossRef Mahesh T, Menon VP: Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother Res. 2004, 18: 123-127. 10.1002/ptr.1374.CrossRef
12.
go back to reference Coskun O, Kanter M, Korkmaz A, Oter S: Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005, 51: 117-123. 10.1016/j.phrs.2004.06.002.CrossRef Coskun O, Kanter M, Korkmaz A, Oter S: Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005, 51: 117-123. 10.1016/j.phrs.2004.06.002.CrossRef
13.
go back to reference Kobori M, Masumoto S, Akimoto Y, Takahashi Y: Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res. 2009, 53: 859-868. 10.1002/mnfr.200800310.CrossRef Kobori M, Masumoto S, Akimoto Y, Takahashi Y: Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res. 2009, 53: 859-868. 10.1002/mnfr.200800310.CrossRef
14.
go back to reference Slimestad R, Fossen T, Vagen IM: Onions: a source of unique dietary flavonoids. J Agric Food Chem. 2007, 55: 10067-10080. 10.1021/jf0712503.CrossRef Slimestad R, Fossen T, Vagen IM: Onions: a source of unique dietary flavonoids. J Agric Food Chem. 2007, 55: 10067-10080. 10.1021/jf0712503.CrossRef
15.
go back to reference Smith C, Lombard KA, Peffley EB, Liu W: Genetic analysis of quercetin in onion (Allium cepa L.) 'Lady Raider'. Texas J Agric Nat Resource. 2003, 16: 24-28. Smith C, Lombard KA, Peffley EB, Liu W: Genetic analysis of quercetin in onion (Allium cepa L.) 'Lady Raider'. Texas J Agric Nat Resource. 2003, 16: 24-28.
16.
go back to reference Park J, Kim J, Kim MK: Onion flesh and onion peel enhance antioxidant status in aged rats. J Nutr Sci Vitaminol (Tokyo). 2007, 53: 21-29. 10.3177/jnsv.53.21.CrossRef Park J, Kim J, Kim MK: Onion flesh and onion peel enhance antioxidant status in aged rats. J Nutr Sci Vitaminol (Tokyo). 2007, 53: 21-29. 10.3177/jnsv.53.21.CrossRef
17.
go back to reference Nemeth K, Piskula MK: Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr. 2007, 47: 397-409. 10.1080/10408390600846291.CrossRef Nemeth K, Piskula MK: Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr. 2007, 47: 397-409. 10.1080/10408390600846291.CrossRef
18.
go back to reference Kanter M, Altan MF, Donmez S, Ocakci A, Kartal ME: The effects of quercetin on bone minerals, biomechanical behavior, and structure in streptozotocin-induced diabetic rats. Cell Biochem Funct. 2007, 25: 747-752. 10.1002/cbf.1397.CrossRef Kanter M, Altan MF, Donmez S, Ocakci A, Kartal ME: The effects of quercetin on bone minerals, biomechanical behavior, and structure in streptozotocin-induced diabetic rats. Cell Biochem Funct. 2007, 25: 747-752. 10.1002/cbf.1397.CrossRef
19.
go back to reference Singleton VL, Rossi JA: Colorimetry of total phenolics with phosphomolybdic phosphorungstic acid reagents. Am J Enol Vitic. 1965, 16: 44-158. Singleton VL, Rossi JA: Colorimetry of total phenolics with phosphomolybdic phosphorungstic acid reagents. Am J Enol Vitic. 1965, 16: 44-158.
20.
go back to reference Hertog MGL, Hollman PCH, Venema DP: Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J Agric Food Chem. 1992, 40: 1591-1598.CrossRef Hertog MGL, Hollman PCH, Venema DP: Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J Agric Food Chem. 1992, 40: 1591-1598.CrossRef
21.
go back to reference Wolever TM, Jenkins DJ, Jenkins AL, Josse RG: The glycemic index: methodology and clinical implications. Am J Clin Nutr. 1991, 54: 846-854. Wolever TM, Jenkins DJ, Jenkins AL, Josse RG: The glycemic index: methodology and clinical implications. Am J Clin Nutr. 1991, 54: 846-854.
22.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419. 10.1007/BF00280883.CrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419. 10.1007/BF00280883.CrossRef
23.
go back to reference Hanley AJG, Stern MP, Williams K, Haffner SM: Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease. Diabetes Care. 2002, 25: 1177-1184. 10.2337/diacare.25.7.1177.CrossRef Hanley AJG, Stern MP, Williams K, Haffner SM: Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease. Diabetes Care. 2002, 25: 1177-1184. 10.2337/diacare.25.7.1177.CrossRef
24.
go back to reference Lo S, Russell JC, Taylor AW: Determination of glycogen in small tissue samples. J Appl Physiol. 1970, 28: 234-236. Lo S, Russell JC, Taylor AW: Determination of glycogen in small tissue samples. J Appl Physiol. 1970, 28: 234-236.
25.
go back to reference Rerup CC: Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev. 1970, 22: 485-518. Rerup CC: Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev. 1970, 22: 485-518.
26.
go back to reference Parveen K, Khan MR, Mujeeb M, Siddiqui WA: Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in liver of type 2 diabetic rats. Chem Biol Interact. 2010, 186: 219-227. 10.1016/j.cbi.2010.04.023.CrossRef Parveen K, Khan MR, Mujeeb M, Siddiqui WA: Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in liver of type 2 diabetic rats. Chem Biol Interact. 2010, 186: 219-227. 10.1016/j.cbi.2010.04.023.CrossRef
27.
go back to reference Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P: Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005, 52: 313-320. 10.1016/j.phrs.2005.05.004.CrossRef Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P: Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005, 52: 313-320. 10.1016/j.phrs.2005.05.004.CrossRef
28.
go back to reference Islam MS, Choi H, Loots du T: Effects of dietary onion (Allium Cepa L.) in a high-fat diet streptozotocin-induced diabetes rodent model. Ann Nutr Metab. 2008, 53: 6-12. 10.1159/000152868.CrossRef Islam MS, Choi H, Loots du T: Effects of dietary onion (Allium Cepa L.) in a high-fat diet streptozotocin-induced diabetes rodent model. Ann Nutr Metab. 2008, 53: 6-12. 10.1159/000152868.CrossRef
29.
go back to reference Luo J, Quan J, Tsai J, Hobensack CK, Sullivan C, Hector R, Reaven GM: Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metabolism. 1998, 47: 663-668. 10.1016/S0026-0495(98)90027-0.CrossRef Luo J, Quan J, Tsai J, Hobensack CK, Sullivan C, Hector R, Reaven GM: Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metabolism. 1998, 47: 663-668. 10.1016/S0026-0495(98)90027-0.CrossRef
30.
go back to reference Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM: A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000, 49: 1390-1394. 10.1053/meta.2000.17721.CrossRef Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM: A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000, 49: 1390-1394. 10.1053/meta.2000.17721.CrossRef
31.
go back to reference Baron AD, Brechtel G, Wallace P, Edelman SV: Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988, 255: E769-E774. Baron AD, Brechtel G, Wallace P, Edelman SV: Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988, 255: E769-E774.
32.
go back to reference Zhang F, Ye C, Li G, Ding W, Zhou W, Zhu H, Chen G, Luo T, Guang M, Liu Y, Zhang D, Zheng S, Yang J, Gu Y, Xie X, Luo M: The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp Anim. 2003, 52: 401-407. 10.1538/expanim.52.401.CrossRef Zhang F, Ye C, Li G, Ding W, Zhou W, Zhu H, Chen G, Luo T, Guang M, Liu Y, Zhang D, Zheng S, Yang J, Gu Y, Xie X, Luo M: The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp Anim. 2003, 52: 401-407. 10.1538/expanim.52.401.CrossRef
33.
go back to reference Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, Levine M: Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007, 21: 366-377. 10.1096/fj.06-6620com.CrossRef Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, Levine M: Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007, 21: 366-377. 10.1096/fj.06-6620com.CrossRef
34.
go back to reference Defronzo RA, Tripathy D: Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009, 32: S157-S163. 10.2337/dc09-S302.CrossRef Defronzo RA, Tripathy D: Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009, 32: S157-S163. 10.2337/dc09-S302.CrossRef
35.
go back to reference Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A: Direct and machrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem. 2009, 115: 176-190. 10.1080/13813450903079314.CrossRef Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A: Direct and machrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem. 2009, 115: 176-190. 10.1080/13813450903079314.CrossRef
36.
go back to reference Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006, 444: 860-867. 10.1038/nature05485.CrossRef Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006, 444: 860-867. 10.1038/nature05485.CrossRef
37.
go back to reference Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM: A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007, 282: 35279-35292. 10.1074/jbc.M706762200.CrossRef Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM: A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007, 282: 35279-35292. 10.1074/jbc.M706762200.CrossRef
38.
go back to reference Pickup JC, Crook MA: Is type II diabetes mellitus a disease of the innate immune system?. Diabetologia. 1998, 41: 1241-1248. 10.1007/s001250051058.CrossRef Pickup JC, Crook MA: Is type II diabetes mellitus a disease of the innate immune system?. Diabetologia. 1998, 41: 1241-1248. 10.1007/s001250051058.CrossRef
39.
go back to reference Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA: Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 2010: 1-11. 10.1155/2010/453892.CrossRef Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA: Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 2010: 1-11. 10.1155/2010/453892.CrossRef
Metadata
Title
Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats
Authors
Ji Young Jung
Yeni Lim
Min Sun Moon
Ji Yeon Kim
Oran Kwon
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2011
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-8-18

Other articles of this Issue 1/2011

Nutrition & Metabolism 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine