Skip to main content
Top
Published in: Nutrition & Metabolism 1/2011

Open Access 01-12-2011 | Brief communication

Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones

Authors: Margreet R Olthof, Aimée E van Dijk, Carolyn F Deacon, Robert J Heine, Rob M van Dam

Published in: Nutrition & Metabolism | Issue 1/2011

Login to get access

Abstract

Coffee consumption is associated with a lower risk of type 2 diabetes. We tested the hypothesis that this is mediated by incretin hormones by measuring the acute effects of decaffeinated coffee and coffee components on GLP-1 and GIP concentrations. A randomized cross-over trial of the effects of 12 g decaffeinated coffee, 1 g chlorogenic acid, 500 mg trigonelline, and placebo on total and intact GLP-1 and GIP concentrations during an oral glucose tolerance test took place in fifteen overweight men. No treatment significantly affected the overall GLP-1 or GIP secretion pattern following an OGTT relative to placebo. Decaffeinated coffee slightly increased total GLP-1 concentration 30 minutes after ingestion (before the OGTT) relative to placebo (2.7 pmol/L, p = 0.03), but this change did not correspond with changes in glucose or insulin secretion. These findings do not support the hypothesis that coffee acutely improves glucose tolerance through effects on the secretion of incretin hormones. Chronic effects of coffee and its major components still need to be investigated.
Appendix
Available only for authorised users
Literature
1.
go back to reference van Dam RM, Hu FB: Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005, 294: 97-104. 10.1001/jama.294.1.97.CrossRef van Dam RM, Hu FB: Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005, 294: 97-104. 10.1001/jama.294.1.97.CrossRef
2.
go back to reference van Dam RM, Willett WC, Manson JE, Hu FB: Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care. 2006, 29: 398-403. 10.2337/diacare.29.02.06.dc05-1512.CrossRef van Dam RM, Willett WC, Manson JE, Hu FB: Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care. 2006, 29: 398-403. 10.2337/diacare.29.02.06.dc05-1512.CrossRef
3.
go back to reference Clifford MN: chlorogenic acids and other cinnamates - nature, occurence and dietary burden. J Sci Food Agric. 1999, 79: 10-10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.CrossRef Clifford MN: chlorogenic acids and other cinnamates - nature, occurence and dietary burden. J Sci Food Agric. 1999, 79: 10-10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.CrossRef
4.
go back to reference Minamisawa M, Yoshida S, Takai N: Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Anal Sci. 2004, 20 (2): 325-8. 10.2116/analsci.20.325.CrossRef Minamisawa M, Yoshida S, Takai N: Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Anal Sci. 2004, 20 (2): 325-8. 10.2116/analsci.20.325.CrossRef
5.
go back to reference Mishkinsky J, Joseph B, Sulman FG: Hypoglycaemic effect of trigonelline. Lancet. 1967, 2: 1311-2. 10.1016/S0140-6736(67)90428-X.CrossRef Mishkinsky J, Joseph B, Sulman FG: Hypoglycaemic effect of trigonelline. Lancet. 1967, 2: 1311-2. 10.1016/S0140-6736(67)90428-X.CrossRef
6.
go back to reference Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM: Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct. 2008, 26: 320-8. 10.1002/cbf.1444.CrossRef Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM: Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct. 2008, 26: 320-8. 10.1002/cbf.1444.CrossRef
7.
go back to reference Rodriguez de Sotillo DV, Hadley M: Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem. 2002, 13: 717-26. 10.1016/S0955-2863(02)00231-0.CrossRef Rodriguez de Sotillo DV, Hadley M: Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem. 2002, 13: 717-26. 10.1016/S0955-2863(02)00231-0.CrossRef
8.
go back to reference McCarty MF: A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses. 2005, 64: 848-53. 10.1016/j.mehy.2004.03.037.CrossRef McCarty MF: A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses. 2005, 64: 848-53. 10.1016/j.mehy.2004.03.037.CrossRef
9.
go back to reference Johnston KL, Clifford MN, Morgan LM: Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003, 78: 728-33. Johnston KL, Clifford MN, Morgan LM: Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003, 78: 728-33.
10.
go back to reference Greenberg JA, Owen DR, Geliebter A: Decaffeinated coffee and glucose metabolism in young men. Diabetes Care. 2010, 33: 278-80. 10.2337/dc09-1539.CrossRef Greenberg JA, Owen DR, Geliebter A: Decaffeinated coffee and glucose metabolism in young men. Diabetes Care. 2010, 33: 278-80. 10.2337/dc09-1539.CrossRef
11.
go back to reference van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM: Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009, 32: 1023-5. 10.2337/dc09-0207.CrossRef van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM: Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009, 32: 1023-5. 10.2337/dc09-0207.CrossRef
12.
go back to reference Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, Meier JJ: Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008, 57: 678-87. 10.2337/db07-1124.CrossRef Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, Meier JJ: Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008, 57: 678-87. 10.2337/db07-1124.CrossRef
13.
go back to reference Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ: Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003, 88: 2706-13. 10.1210/jc.2002-021873.CrossRef Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ: Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003, 88: 2706-13. 10.1210/jc.2002-021873.CrossRef
Metadata
Title
Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones
Authors
Margreet R Olthof
Aimée E van Dijk
Carolyn F Deacon
Robert J Heine
Rob M van Dam
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2011
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-8-10

Other articles of this Issue 1/2011

Nutrition & Metabolism 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine