Skip to main content
Top
Published in: Nutrition & Metabolism 1/2009

Open Access 01-12-2009 | Research

Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat

Authors: Mahmood S Mozaffari, Rafik AbdelSayed, Jun Yao Liu, Hereward Wimborne, Azza El-Remessy, Ahmed El-Marakby

Published in: Nutrition & Metabolism | Issue 1/2009

Login to get access

Abstract

Background

Chromium picolinate (Cr(pic)3) is advocated as adjuvant therapy for impaired glycemic control, despite concerns for DNA damage. Potential toxicity of Cr(pic)3 should be greater for the kidney that accumulates chromium. Therefore, we tested the hypothesis that Cr(pic)3 treatment of obese Zucker rats (OZR) exacerbates renal abnormalities associated with dysglycemia.

Methods

Male OZR were treated with diets lacking or containing 5 and 10 mg/kg of chromium, as Cr(pic)3, for 20 weeks; lean Zucker rats (LZR) served as controls. Glycemic and renal effects of Cr(pic)3 were determined in the context of indices of oxidative stress and inflammation.

Results

The OZR displayed increased fasting plasma glucose and insulin in association with enlarged pancreatic islets exhibiting collagen and periodic acid Schiff-positive deposits compared to LZR; Cr(pic)3 treatment did not affect these parameters. The OZR, irrespective of Cr(pic)3, excreted more albumin than LZR. Also, other indices of renal function or histopathology were not affected by Cr(pic)3 treatment. Urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), an index of oxidative DNA damage, was greater in the OZR than LZR; dietary Cr(pic)3 treatment attenuated 8-OHdG excretion. However, immunostaining of kidney for 8-OHdG revealed similar staining pattern and intensity, despite significant renal accumulation of chromium in Cr(pic)3-treated groups. Finally, increased renal nitrotyrosine and cyclooxygenase-2 levels and urinary excretion of monocyte chemoattractant protein-1 of OZR were partially reversed by Cr(pic)3 treatment.

Conclusion

Dietary Cr(pic)3 treatment of OZR does not beneficially influence glycemic status or increase the risk for oxidative DNA damage; rather, the treatment attenuates indices of oxidative stress and inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Friedman JM: Obesity in the new millennium. Nature. 2000, 404: 632-634. Friedman JM: Obesity in the new millennium. Nature. 2000, 404: 632-634.
2.
3.
go back to reference Mozaffari MS, Abdelsayed R, Schaffer SW: Pathogenic mechanisms of diabetic complications: Diagnostic biomarkers and prognostic indicators. Predictive Diagnostics and Personalized Treatment: Dream or Reality. 2009, Edited by Golubnitschaja O Nova Publishers, 157-182. Mozaffari MS, Abdelsayed R, Schaffer SW: Pathogenic mechanisms of diabetic complications: Diagnostic biomarkers and prognostic indicators. Predictive Diagnostics and Personalized Treatment: Dream or Reality. 2009, Edited by Golubnitschaja O Nova Publishers, 157-182.
4.
go back to reference Chaturvedi N: The burden of diabetes and its complications: trends and implications for intervention. Diabetes Res and Clin Pract. 2007, 76: S3-S12. 10.1016/j.diabres.2007.01.019.CrossRef Chaturvedi N: The burden of diabetes and its complications: trends and implications for intervention. Diabetes Res and Clin Pract. 2007, 76: S3-S12. 10.1016/j.diabres.2007.01.019.CrossRef
5.
go back to reference Mehta S, Farmer JA: Obesity and inflammation: A new look at an old problem. Curr Atheroscler Rep. 2007, 9: 134-138. 10.1007/s11883-007-0009-4.CrossRef Mehta S, Farmer JA: Obesity and inflammation: A new look at an old problem. Curr Atheroscler Rep. 2007, 9: 134-138. 10.1007/s11883-007-0009-4.CrossRef
6.
go back to reference Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R: Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005, 111: 1448-1454. 10.1161/01.CIR.0000158483.13093.9D.CrossRef Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R: Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005, 111: 1448-1454. 10.1161/01.CIR.0000158483.13093.9D.CrossRef
7.
go back to reference Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, Gross SS, Goligorsky MS: Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol. 2004, 15: 2391-2403. 10.1097/01.ASN.0000135971.88164.2C.CrossRef Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, Gross SS, Goligorsky MS: Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol. 2004, 15: 2391-2403. 10.1097/01.ASN.0000135971.88164.2C.CrossRef
8.
go back to reference Coimbra TM, Janssen U, Grone HJ, Ostendorf T, Kunter U, Schmidt H, Brabant G, Floege J: Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int. 2000, 57: 167-182. 10.1046/j.1523-1755.2000.00836.x.CrossRef Coimbra TM, Janssen U, Grone HJ, Ostendorf T, Kunter U, Schmidt H, Brabant G, Floege J: Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int. 2000, 57: 167-182. 10.1046/j.1523-1755.2000.00836.x.CrossRef
9.
go back to reference Komers R, Zdychova J, Cahova M, Kazdova L, Lindsley JN, Anderson S: Renal cyclooxygenase-2 in obese Zucker (fatty) rats. Kidney Int. 2005, 67: 2151-2158. 10.1111/j.1523-1755.2005.00320.x.CrossRef Komers R, Zdychova J, Cahova M, Kazdova L, Lindsley JN, Anderson S: Renal cyclooxygenase-2 in obese Zucker (fatty) rats. Kidney Int. 2005, 67: 2151-2158. 10.1111/j.1523-1755.2005.00320.x.CrossRef
10.
go back to reference Anderson RA: Chromium in the prevention and control of diabetes. Diabetes Metab. 2000, 26: 22-27. Anderson RA: Chromium in the prevention and control of diabetes. Diabetes Metab. 2000, 26: 22-27.
11.
go back to reference Trumbo PR, Ellwood KC: Chromium picolinate intake and risk of type 2 diabetes: an evidence-based review by the United States food and drug administration. Nutr Rev. 2006, 64: 357-363. 10.1111/j.1753-4887.2006.tb00220.x.CrossRef Trumbo PR, Ellwood KC: Chromium picolinate intake and risk of type 2 diabetes: an evidence-based review by the United States food and drug administration. Nutr Rev. 2006, 64: 357-363. 10.1111/j.1753-4887.2006.tb00220.x.CrossRef
12.
go back to reference Vincent JB: The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003, 33: 213-230. 10.2165/00007256-200333030-00004.CrossRef Vincent JB: The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003, 33: 213-230. 10.2165/00007256-200333030-00004.CrossRef
13.
go back to reference Stearns DM, Wise JP, Patierno SR, Wetterhahn KE: Chromium (III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J. 1995, 9: 1643-1648. Stearns DM, Wise JP, Patierno SR, Wetterhahn KE: Chromium (III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J. 1995, 9: 1643-1648.
14.
go back to reference Speetjens JK, Collins RA, Vincent JB, Woski SA: The nutritional supplement chromium(III) Tris(picolinate) cleaves DNA. Chem Res Toxicol. 1999, 12: 483-487. 10.1021/tx9900167.CrossRef Speetjens JK, Collins RA, Vincent JB, Woski SA: The nutritional supplement chromium(III) Tris(picolinate) cleaves DNA. Chem Res Toxicol. 1999, 12: 483-487. 10.1021/tx9900167.CrossRef
15.
go back to reference Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG: Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 2002, 180: 5-22. 10.1016/S0300-483X(02)00378-5.CrossRef Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG: Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 2002, 180: 5-22. 10.1016/S0300-483X(02)00378-5.CrossRef
16.
go back to reference Coryell VH, Stearns DM: Molecular analysis of hprt mutations induced by chromium picolinate in CHO AA8 cells. Mutat Res. 2006, 610: 114-123.CrossRef Coryell VH, Stearns DM: Molecular analysis of hprt mutations induced by chromium picolinate in CHO AA8 cells. Mutat Res. 2006, 610: 114-123.CrossRef
17.
go back to reference Lamson DS, Plaza SM: The safety and efficacy of high-dose chromium. Altern Med Rev. 2002, 7: 218-235. Lamson DS, Plaza SM: The safety and efficacy of high-dose chromium. Altern Med Rev. 2002, 7: 218-235.
18.
go back to reference Hepburn DD, Vincent JB: Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream. J Inorg Biochem. 2003, 94: 86-93. 10.1016/S0162-0134(02)00623-2.CrossRef Hepburn DD, Vincent JB: Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream. J Inorg Biochem. 2003, 94: 86-93. 10.1016/S0162-0134(02)00623-2.CrossRef
19.
go back to reference Hepburn DD, Vincent JB: In vivo distribution of chromium from chromium picolinate in rats and implications for the safety of the dietary supplement. Chem Res Toxicol. 2002, 15: 93-100. 10.1021/tx010091t.CrossRef Hepburn DD, Vincent JB: In vivo distribution of chromium from chromium picolinate in rats and implications for the safety of the dietary supplement. Chem Res Toxicol. 2002, 15: 93-100. 10.1021/tx010091t.CrossRef
20.
go back to reference Komorowski JR, Greenberg D, Juturu V: Chromium picolinate does not produce chromosome damage. Toxicol In Vitro. 2008, 22: 819-826. 10.1016/j.tiv.2007.12.007.CrossRef Komorowski JR, Greenberg D, Juturu V: Chromium picolinate does not produce chromosome damage. Toxicol In Vitro. 2008, 22: 819-826. 10.1016/j.tiv.2007.12.007.CrossRef
21.
go back to reference Jain SK, Rains JL, Croad JL: Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007, 43: 1124-1131. 10.1016/j.freeradbiomed.2007.05.019.CrossRef Jain SK, Rains JL, Croad JL: Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007, 43: 1124-1131. 10.1016/j.freeradbiomed.2007.05.019.CrossRef
22.
go back to reference Mozaffari MS, Patel C, Ballas C, Schaffer SW: Effects of chromium picolinate treatment in uninephrectomized rat. Metabolism. 2005, 54: 1243-1249. 10.1016/j.metabol.2005.04.011.CrossRef Mozaffari MS, Patel C, Ballas C, Schaffer SW: Effects of chromium picolinate treatment in uninephrectomized rat. Metabolism. 2005, 54: 1243-1249. 10.1016/j.metabol.2005.04.011.CrossRef
23.
go back to reference Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP: Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol. 2008, 295: E1269-E1276. Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP: Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol. 2008, 295: E1269-E1276.
24.
go back to reference Pastukh V, Wu S, Ricci C, Mozaffari M, Schaffer S: Reversal of hyperglycemic preconditioning by angiotensin II: Role of calcium transport. Am J Physiol. 2005, 288: H1965-H1975. Pastukh V, Wu S, Ricci C, Mozaffari M, Schaffer S: Reversal of hyperglycemic preconditioning by angiotensin II: Role of calcium transport. Am J Physiol. 2005, 288: H1965-H1975.
25.
go back to reference Ricci C, Pastukh V, Mozaffari MS, Schaffer SW: Insulin withdrawal induces apoptosis via a free radical-mediated mechanism. Can J Physiol Pharmacol. 2007, 85: 455-464. 10.1139/Y07-029.CrossRef Ricci C, Pastukh V, Mozaffari MS, Schaffer SW: Insulin withdrawal induces apoptosis via a free radical-mediated mechanism. Can J Physiol Pharmacol. 2007, 85: 455-464. 10.1139/Y07-029.CrossRef
26.
go back to reference Ali TK, Matragoon S, Pillai BA, Liou GI, El-Remessy AB: Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes. 2008, 57: 889-898. 10.2337/db07-1669.CrossRef Ali TK, Matragoon S, Pillai BA, Liou GI, El-Remessy AB: Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes. 2008, 57: 889-898. 10.2337/db07-1669.CrossRef
27.
go back to reference Vincent JB: The biochemistry of chromium. J Nutr. 2000, 130: 715-718. Vincent JB: The biochemistry of chromium. J Nutr. 2000, 130: 715-718.
28.
go back to reference Vincent JB: Mechanisms of chromium action: low-molecular-weight chromium binding substance. J Am Col Nutr. 1999, 18: 6-12.CrossRef Vincent JB: Mechanisms of chromium action: low-molecular-weight chromium binding substance. J Am Col Nutr. 1999, 18: 6-12.CrossRef
29.
go back to reference Cefalu WT, Hu FB: Role of chromium in human health and in diabetes. Diabetes Care. 2004, 27: 2741-2751. 10.2337/diacare.27.11.2741.CrossRef Cefalu WT, Hu FB: Role of chromium in human health and in diabetes. Diabetes Care. 2004, 27: 2741-2751. 10.2337/diacare.27.11.2741.CrossRef
30.
go back to reference Iqbal N, Cardillo S, Volger S, Bloedon LT, Anderson RA, Boston R, Szapary PO: Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009, 7: 143-150. 10.1089/met.2008.0048.CrossRef Iqbal N, Cardillo S, Volger S, Bloedon LT, Anderson RA, Boston R, Szapary PO: Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009, 7: 143-150. 10.1089/met.2008.0048.CrossRef
31.
go back to reference Stout MD, Nyska A, Collins BJ, Witt KL, Kissling GE, Malarkey DE, Hooth MJ: Chronic toxicity and carcinogenicity studies of chromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1 mice for 2 years. Food Chem Toxicol. 2009, 47: 729-733. 10.1016/j.fct.2009.01.006.CrossRef Stout MD, Nyska A, Collins BJ, Witt KL, Kissling GE, Malarkey DE, Hooth MJ: Chronic toxicity and carcinogenicity studies of chromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1 mice for 2 years. Food Chem Toxicol. 2009, 47: 729-733. 10.1016/j.fct.2009.01.006.CrossRef
32.
go back to reference Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, Cefalu WT: Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care. 2006, 29: 1826-1832. 10.2337/dc06-0254.CrossRef Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, Cefalu WT: Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care. 2006, 29: 1826-1832. 10.2337/dc06-0254.CrossRef
33.
go back to reference Wu LL, Chiou CC, Chang PY, Wu JT: Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004, 339: 1-9. 10.1016/j.cccn.2003.09.010.CrossRef Wu LL, Chiou CC, Chang PY, Wu JT: Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004, 339: 1-9. 10.1016/j.cccn.2003.09.010.CrossRef
34.
go back to reference Snow ET: Effects of chromium on DNA replication in vitro. Environ Health Perspect. 1994, 102: 41-44. 10.2307/3431761.CrossRef Snow ET: Effects of chromium on DNA replication in vitro. Environ Health Perspect. 1994, 102: 41-44. 10.2307/3431761.CrossRef
35.
go back to reference Gudi R, Slesinski RS, Clarke JJ, San RH: Chromium picolinate does not produce chromosome damage in CHO cells. Mutat Res. 2005, 587: 140-146.CrossRef Gudi R, Slesinski RS, Clarke JJ, San RH: Chromium picolinate does not produce chromosome damage in CHO cells. Mutat Res. 2005, 587: 140-146.CrossRef
36.
go back to reference Szendroedi J, Roden M: Ectopic lipids and organ function. Curr Opin Lipidol. 2009, 20: 50-56. 10.1097/MOL.0b013e328321b3a8.CrossRef Szendroedi J, Roden M: Ectopic lipids and organ function. Curr Opin Lipidol. 2009, 20: 50-56. 10.1097/MOL.0b013e328321b3a8.CrossRef
37.
go back to reference Swifka J, Weiss J, Addicks K, Eckel J, Rösen P: Epicardial fat from guinea pig: a model to study the paracrine network of interactions between epicardial fat and myocardium?. Cardiovasc Drugs Ther. 2008, 22: 107-114. 10.1007/s10557-008-6085-z.CrossRef Swifka J, Weiss J, Addicks K, Eckel J, Rösen P: Epicardial fat from guinea pig: a model to study the paracrine network of interactions between epicardial fat and myocardium?. Cardiovasc Drugs Ther. 2008, 22: 107-114. 10.1007/s10557-008-6085-z.CrossRef
Metadata
Title
Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat
Authors
Mahmood S Mozaffari
Rafik AbdelSayed
Jun Yao Liu
Hereward Wimborne
Azza El-Remessy
Ahmed El-Marakby
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2009
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-6-51

Other articles of this Issue 1/2009

Nutrition & Metabolism 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine