Skip to main content
Top
Published in: Nutrition & Metabolism 1/2007

Open Access 01-12-2007 | Research

The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

Authors: Weihua Zhou, Purna Mukherjee, Michael A Kiebish, William T Markis, John G Mantis, Thomas N Seyfried

Published in: Nutrition & Metabolism | Issue 1/2007

Login to get access

Abstract

Background

Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal®, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG).

Methods

Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal® was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal® on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet.

Results

KetoCal® administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal® diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal® groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal brain suggesting that these brain tumors have reduced ability to metabolize ketone bodies for energy.

Conclusion

The results indicate that KetoCal® has anti-tumor and anti-angiogenic effects in experimental mouse and human brain tumors when administered in restricted amounts. The therapeutic effect of KetoCal® for brain cancer management was due largely to the reduction of total caloric content, which reduces circulating glucose required for rapid tumor growth. A dependency on glucose for energy together with defects in ketone body metabolism largely account for why the brain tumors grow minimally on either a ketogenic-restricted diet or on a standard-restricted diet. Genes for ketone body metabolism should be useful for screening brain tumors that could be targeted with calorically restricted high fat/low carbohydrate ketogenic diets. This preclinical study indicates that restricted KetoCal® is a safe and effective diet therapy and should be considered as an alternative therapeutic option for malignant brain cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lowry JK, Snyder JJ, Lowry PW: Brain tumors in the elderly: recent trends in a Minnesota cohort study. Arch Neurol 1998, 55: 922-928. 10.1001/archneur.55.7.922CrossRef Lowry JK, Snyder JJ, Lowry PW: Brain tumors in the elderly: recent trends in a Minnesota cohort study. Arch Neurol 1998, 55: 922-928. 10.1001/archneur.55.7.922CrossRef
2.
go back to reference Kaiser J: No meeting of minds on childhood cancer. Science 1999, 286: 1832-1834. 10.1126/science.286.5446.1832CrossRef Kaiser J: No meeting of minds on childhood cancer. Science 1999, 286: 1832-1834. 10.1126/science.286.5446.1832CrossRef
3.
go back to reference Kaatsch P, Rickert CH, Kuhl J, Schuz J, Michaelis J: Population-based epidemiologic data on brain tumors in German children. Cancer 2001, 92: 3155-3164.CrossRef Kaatsch P, Rickert CH, Kuhl J, Schuz J, Michaelis J: Population-based epidemiologic data on brain tumors in German children. Cancer 2001, 92: 3155-3164.CrossRef
4.
go back to reference Jukich PJ, McCarthy BJ, Surawicz TS, Freels S, Davis FG: Trends in incidence of primary brain tumors in the United States, 1985–1994. Neuro-oncol 2001, 3: 141-151. 10.1215/15228517-3-3-141 Jukich PJ, McCarthy BJ, Surawicz TS, Freels S, Davis FG: Trends in incidence of primary brain tumors in the United States, 1985–1994. Neuro-oncol 2001, 3: 141-151. 10.1215/15228517-3-3-141
5.
go back to reference Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2005, 2: 30. 10.1186/1743-7075-2-30CrossRef Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2005, 2: 30. 10.1186/1743-7075-2-30CrossRef
6.
go back to reference Fisher PG, Buffler PA: Malignant gliomas in 2005: where to GO from here? Jama 2005, 293: 615-617. 10.1001/jama.293.5.615CrossRef Fisher PG, Buffler PA: Malignant gliomas in 2005: where to GO from here? Jama 2005, 293: 615-617. 10.1001/jama.293.5.615CrossRef
7.
go back to reference Bhat SR, Goodwin TL, Burwinkle TM, Lansdale MF, Dahl GV, Huhn SL, Gibbs IC, Donaldson SS, Rosenblum RK, Varni JW, Fisher PG: Profile of daily life in children with brain tumors: an assessment of health-related quality of life. J Clin Oncol 2005, 23: 5493-5500. 10.1200/JCO.2005.10.190CrossRef Bhat SR, Goodwin TL, Burwinkle TM, Lansdale MF, Dahl GV, Huhn SL, Gibbs IC, Donaldson SS, Rosenblum RK, Varni JW, Fisher PG: Profile of daily life in children with brain tumors: an assessment of health-related quality of life. J Clin Oncol 2005, 23: 5493-5500. 10.1200/JCO.2005.10.190CrossRef
8.
go back to reference Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P: Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 2003, 89: 1375-1382. 10.1038/sj.bjc.6601269CrossRef Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P: Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 2003, 89: 1375-1382. 10.1038/sj.bjc.6601269CrossRef
9.
go back to reference Seyfried TN, Mukherjee P: Anti-Angiogenic and Pro-Apoptotic Effects of Dietary Restriction in Experimental Brain Cancer: Role of Glucose and Ketone Bodies. In Integration/Interaction of Oncologic Growth. Volume 15. 2nd edition. Edited by: Meadows GG. New York: Kluwer Academic; 2005. [Kaiser H (Series Editor): Cancer Growth and Progression] Seyfried TN, Mukherjee P: Anti-Angiogenic and Pro-Apoptotic Effects of Dietary Restriction in Experimental Brain Cancer: Role of Glucose and Ketone Bodies. In Integration/Interaction of Oncologic Growth. Volume 15. 2nd edition. Edited by: Meadows GG. New York: Kluwer Academic; 2005. [Kaiser H (Series Editor): Cancer Growth and Progression]
10.
go back to reference Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 2004, 10: 5622-5629. 10.1158/1078-0432.CCR-04-0308CrossRef Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 2004, 10: 5622-5629. 10.1158/1078-0432.CCR-04-0308CrossRef
11.
go back to reference Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer 2002, 86: 1615-1621. 10.1038/sj.bjc.6600298CrossRef Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer 2002, 86: 1615-1621. 10.1038/sj.bjc.6600298CrossRef
12.
go back to reference Greene AE, Todorova MT, Seyfried TN: Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 2003, 86: 529-537. 10.1046/j.1471-4159.2003.01862.xCrossRef Greene AE, Todorova MT, Seyfried TN: Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 2003, 86: 529-537. 10.1046/j.1471-4159.2003.01862.xCrossRef
13.
go back to reference VanItallie TB, Nufert TH: Ketones: metabolism's ugly duckling. Nutr Rev 2003, 61: 327-341. 10.1301/nr.2003.oct.327-341CrossRef VanItallie TB, Nufert TH: Ketones: metabolism's ugly duckling. Nutr Rev 2003, 61: 327-341. 10.1301/nr.2003.oct.327-341CrossRef
14.
go back to reference Klepper J, Diefenbach S, Kohlschutter A, Voit T: Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 321-327. 10.1016/j.plefa.2003.07.004CrossRef Klepper J, Diefenbach S, Kohlschutter A, Voit T: Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 321-327. 10.1016/j.plefa.2003.07.004CrossRef
15.
go back to reference Falk RE, Cederbaum SD, Blass JP, Gibson GE, Kark RA, Carrel RE: Ketonic diet in the management of pyruvate dehydrogenase deficiency. Pediatrics 1976, 58: 713-721. Falk RE, Cederbaum SD, Blass JP, Gibson GE, Kark RA, Carrel RE: Ketonic diet in the management of pyruvate dehydrogenase deficiency. Pediatrics 1976, 58: 713-721.
16.
go back to reference Taylor MR, Hurley JB, Van Epps HA, Brockerhoff SE: A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc Natl Acad Sci USA 2004, 101: 4584-4589. 10.1073/pnas.0307074101CrossRef Taylor MR, Hurley JB, Van Epps HA, Brockerhoff SE: A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc Natl Acad Sci USA 2004, 101: 4584-4589. 10.1073/pnas.0307074101CrossRef
17.
go back to reference Veech RL: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 309-319. 10.1016/j.plefa.2003.09.007CrossRef Veech RL: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 309-319. 10.1016/j.plefa.2003.09.007CrossRef
18.
go back to reference Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN: Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond) 2004, 1: 11. 10.1186/1743-7075-1-11CrossRef Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN: Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond) 2004, 1: 11. 10.1186/1743-7075-1-11CrossRef
19.
go back to reference Tisdale MJ: Role of acetoacetyl-CoA synthetase in acetoacetate utilization by tumor cells. Cancer Biochem Biophys 1984, 7: 101-107. Tisdale MJ: Role of acetoacetyl-CoA synthetase in acetoacetate utilization by tumor cells. Cancer Biochem Biophys 1984, 7: 101-107.
20.
go back to reference Morris AA: Cerebral ketone body metabolism. J Inherit Metab Dis 2005, 28: 109-121. 10.1007/s10545-005-5518-0CrossRef Morris AA: Cerebral ketone body metabolism. J Inherit Metab Dis 2005, 28: 109-121. 10.1007/s10545-005-5518-0CrossRef
21.
go back to reference Sawai M, Yashiro M, Nishiguchi Y, Ohira M, Hirakawa K: Growth-inhibitory effects of the ketone body, monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Res 2004, 24: 2213-2217. Sawai M, Yashiro M, Nishiguchi Y, Ohira M, Hirakawa K: Growth-inhibitory effects of the ketone body, monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Res 2004, 24: 2213-2217.
22.
go back to reference Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr: Ketone bodies, potential therapeutic uses. IUBMB Life 2001, 51: 241-247.CrossRef Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr: Ketone bodies, potential therapeutic uses. IUBMB Life 2001, 51: 241-247.CrossRef
23.
go back to reference John AP: Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: the impact of this on the treatment of cancer. Med Hypotheses 2001, 57: 429-431. 10.1054/mehy.2001.1335CrossRef John AP: Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: the impact of this on the treatment of cancer. Med Hypotheses 2001, 57: 429-431. 10.1054/mehy.2001.1335CrossRef
24.
go back to reference Warburg O: On the origin of cancer cells. Science 1956, 123: 309-314. 10.1126/science.123.3191.309CrossRef Warburg O: On the origin of cancer cells. Science 1956, 123: 309-314. 10.1126/science.123.3191.309CrossRef
25.
go back to reference Meixensberger J, Herting B, Roggendorf W, Reichmann H: Metabolic patterns in malignant gliomas. J Neurooncol 1995, 24: 153-161. 10.1007/BF01078485CrossRef Meixensberger J, Herting B, Roggendorf W, Reichmann H: Metabolic patterns in malignant gliomas. J Neurooncol 1995, 24: 153-161. 10.1007/BF01078485CrossRef
26.
go back to reference Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF: Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 1997, 17: 1903-1911. Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, Poupon MF: Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 1997, 17: 1903-1911.
27.
go back to reference Mies G, Paschen W, Ebhardt G, Hossmann KA: Relationship between blood flow, glucose metabolism, protein synthesis, glucose and ATP content in experimentally-induced glioma (RG1 2.2) of rat brain. J Neurooncol 1990, 9: 17-28. 10.1007/BF00167064CrossRef Mies G, Paschen W, Ebhardt G, Hossmann KA: Relationship between blood flow, glucose metabolism, protein synthesis, glucose and ATP content in experimentally-induced glioma (RG1 2.2) of rat brain. J Neurooncol 1990, 9: 17-28. 10.1007/BF00167064CrossRef
28.
go back to reference Seyfried TN, Mukherjee P, Adams E, Mulroony T, Abate LE: Metabolic Control of Brain Cancer: Role of Glucose and Ketone Bodies. Proc Amer Assoc Cancer Res 2005, 46: 1147. Seyfried TN, Mukherjee P, Adams E, Mulroony T, Abate LE: Metabolic Control of Brain Cancer: Role of Glucose and Ketone Bodies. Proc Amer Assoc Cancer Res 2005, 46: 1147.
29.
go back to reference Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995, 14: 202-208.CrossRef Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995, 14: 202-208.CrossRef
30.
go back to reference Mahoney LB, Denny CA, Seyfried TN: Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 2006, 5: 13. 10.1186/1476-511X-5-13CrossRef Mahoney LB, Denny CA, Seyfried TN: Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 2006, 5: 13. 10.1186/1476-511X-5-13CrossRef
31.
go back to reference Freeman JM, Freeman JB, Kelly MT: The Ketogenic Diet: A Treatment for Epilepsy. third edition. New York: Demos; 2000. Freeman JM, Freeman JB, Kelly MT: The Ketogenic Diet: A Treatment for Epilepsy. third edition. New York: Demos; 2000.
32.
go back to reference Kang HC, Chung da E, Kim DW, Kim HD: Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 2004, 45: 1116-1123. 10.1111/j.0013-9580.2004.10004.xCrossRef Kang HC, Chung da E, Kim DW, Kim HD: Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 2004, 45: 1116-1123. 10.1111/j.0013-9580.2004.10004.xCrossRef
33.
go back to reference Wheless JW: The ketogenic diet: an effective medical therapy with side effects. J Child Neurol 2001, 16: 633-635.CrossRef Wheless JW: The ketogenic diet: an effective medical therapy with side effects. J Child Neurol 2001, 16: 633-635.CrossRef
34.
go back to reference Freeman JM, Kossoff EH, Freeman JB, Kelly MT: The Ketogenic Diet: A Treatment for Children and Others with Epilepsy. Fourth edition. New York: Demos; 2007. Freeman JM, Kossoff EH, Freeman JB, Kelly MT: The Ketogenic Diet: A Treatment for Children and Others with Epilepsy. Fourth edition. New York: Demos; 2007.
35.
go back to reference Zhou W, Mukherjee P, Kiebish KA, Mantis JG, Gorham KN, Mulrooney TJ, Markis WT, Seyfried TN: KetoCal ® , a novel ketogenic diet therapy for brain cancer. Proc Amer Assoc Cancer Res 2006, 47: 3887. Zhou W, Mukherjee P, Kiebish KA, Mantis JG, Gorham KN, Mulrooney TJ, Markis WT, Seyfried TN: KetoCal ® , a novel ketogenic diet therapy for brain cancer. Proc Amer Assoc Cancer Res 2006, 47: 3887.
36.
go back to reference Flavin HJ, Wieraszko A, Seyfried TN: Enhanced aspartate release from hippocampal slices of epileptic (El) mice. J Neurochem 1991, 56: 1007-1011. 10.1111/j.1471-4159.1991.tb02021.xCrossRef Flavin HJ, Wieraszko A, Seyfried TN: Enhanced aspartate release from hippocampal slices of epileptic (El) mice. J Neurochem 1991, 56: 1007-1011. 10.1111/j.1471-4159.1991.tb02021.xCrossRef
37.
go back to reference Seyfried TN, El-Abbadi M, Roy ML: Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 1992, 17: 147-167.CrossRef Seyfried TN, El-Abbadi M, Roy ML: Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 1992, 17: 147-167.CrossRef
38.
go back to reference Zimmerman HM, Arnold H: Experimental brain tumors: I. tumors produced with methylcholanthrene. Cancer Res 1941, 1: 919-938. Zimmerman HM, Arnold H: Experimental brain tumors: I. tumors produced with methylcholanthrene. Cancer Res 1941, 1: 919-938.
39.
go back to reference Bai H, Seyfried TN: Influence of ganglioside GM3 and high density lipoprotein (HDL) on the cohesion of mouse brain tumor cells. J Lipid Res 1997, 38: 160-172. Bai H, Seyfried TN: Influence of ganglioside GM3 and high density lipoprotein (HDL) on the cohesion of mouse brain tumor cells. J Lipid Res 1997, 38: 160-172.
40.
go back to reference Ecsedy JA, Yohe HC, Bergeron AJ, Seyfried TN: Tumor-infiltrating macrophages contribute to the glycosphinglipid composition of brain tumors. J Lipid Res 1998, 39: 2218-2227. Ecsedy JA, Yohe HC, Bergeron AJ, Seyfried TN: Tumor-infiltrating macrophages contribute to the glycosphinglipid composition of brain tumors. J Lipid Res 1998, 39: 2218-2227.
41.
go back to reference Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN: N-butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer 2001, 84: 1107-1114. 10.1054/bjoc.2000.1713CrossRef Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN: N-butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer 2001, 84: 1107-1114. 10.1054/bjoc.2000.1713CrossRef
42.
go back to reference Cotterchio M, Seyfried TN: The influence of ImuVert, a biological response modifier, on the growth and ganglioside composition of murine neural tumors. Mol Chem Neuropathol 1993, 20: 163-172.CrossRef Cotterchio M, Seyfried TN: The influence of ImuVert, a biological response modifier, on the growth and ganglioside composition of murine neural tumors. Mol Chem Neuropathol 1993, 20: 163-172.CrossRef
43.
go back to reference Ponten J, Macintyre EH: Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 1968, 74: 465-486.CrossRef Ponten J, Macintyre EH: Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 1968, 74: 465-486.CrossRef
44.
go back to reference Ecsedy JA, Holthaus KA, Yohe HC, Seyfried TN: Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J Neurochem 1999, 73: 254-259. 10.1046/j.1471-4159.1999.0730254.xCrossRef Ecsedy JA, Holthaus KA, Yohe HC, Seyfried TN: Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J Neurochem 1999, 73: 254-259. 10.1046/j.1471-4159.1999.0730254.xCrossRef
45.
go back to reference Malik A, Afaq F, Sarfaraz S, Adhami VM, Syed DN, Mukhtar H: Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc Natl Acad Sci USA 2005, 102: 14813-14818. 10.1073/pnas.0505870102CrossRef Malik A, Afaq F, Sarfaraz S, Adhami VM, Syed DN, Mukhtar H: Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc Natl Acad Sci USA 2005, 102: 14813-14818. 10.1073/pnas.0505870102CrossRef
46.
go back to reference Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989, 24: 148-154. 10.1007/BF00300234CrossRef Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989, 24: 148-154. 10.1007/BF00300234CrossRef
47.
go back to reference Williamson DH, Mellanby J, Krebs HA: Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J 1962, 82: 90-96.CrossRef Williamson DH, Mellanby J, Krebs HA: Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J 1962, 82: 90-96.CrossRef
48.
go back to reference Krebs HA, Williamson DH, Bates MW, Page MA, Hawkins RA: The role of ketone bodies in caloric homeostasis. Adv Enzyme Reg 1971, 9: 387-409. 10.1016/S0065-2571(71)80055-9CrossRef Krebs HA, Williamson DH, Bates MW, Page MA, Hawkins RA: The role of ketone bodies in caloric homeostasis. Adv Enzyme Reg 1971, 9: 387-409. 10.1016/S0065-2571(71)80055-9CrossRef
49.
go back to reference Bhagavan NV: Medical Biochemistry. Fourth edition. New York: Harcourt; 2002. Bhagavan NV: Medical Biochemistry. Fourth edition. New York: Harcourt; 2002.
50.
go back to reference Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 1991, 324: 1-8.CrossRef Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 1991, 324: 1-8.CrossRef
51.
go back to reference Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK: Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst 1999, 91: 512-523. 10.1093/jnci/91.6.512CrossRef Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK: Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst 1999, 91: 512-523. 10.1093/jnci/91.6.512CrossRef
52.
go back to reference Abate LE, Mukherjee P, Seyfried TN: Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J Neurochem 2006, 98: 1973-1984. 10.1111/j.1471-4159.2006.04097.xCrossRef Abate LE, Mukherjee P, Seyfried TN: Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J Neurochem 2006, 98: 1973-1984. 10.1111/j.1471-4159.2006.04097.xCrossRef
53.
go back to reference Lang TA, Secic M: How to Report Statistics in Medicine. Philadelphia: Amer. College Physicians; 1997. Lang TA, Secic M: How to Report Statistics in Medicine. Philadelphia: Amer. College Physicians; 1997.
54.
go back to reference Hoag WG, Dickie MM: Nutrition. In Biology of the Laboratory Mouse. second edition. Edited by: Green EL. New York: Dover; 1968. Hoag WG, Dickie MM: Nutrition. In Biology of the Laboratory Mouse. second edition. Edited by: Green EL. New York: Dover; 1968.
55.
go back to reference Todorova MT, Tandon P, Madore RA, Stafstrom CE, Seyfried TN: The ketogenic diet inhibits epileptogenesis in EL mice: a genetic model for idiopathic epilepsy. Epilepsia 2000, 41: 933-940. 10.1111/j.1528-1157.2000.tb00275.xCrossRef Todorova MT, Tandon P, Madore RA, Stafstrom CE, Seyfried TN: The ketogenic diet inhibits epileptogenesis in EL mice: a genetic model for idiopathic epilepsy. Epilepsia 2000, 41: 933-940. 10.1111/j.1528-1157.2000.tb00275.xCrossRef
56.
go back to reference Greene AE, Todorova MT, McGowan R, Seyfried TN: Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 2001, 42: 1371-1378. 10.1046/j.1528-1157.2001.17601.xCrossRef Greene AE, Todorova MT, McGowan R, Seyfried TN: Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 2001, 42: 1371-1378. 10.1046/j.1528-1157.2001.17601.xCrossRef
57.
go back to reference Morgan TE, Wong AM, Finch CE: Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip Top Gerontol 2007, 35: 83-97. Morgan TE, Wong AM, Finch CE: Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip Top Gerontol 2007, 35: 83-97.
58.
go back to reference Rous P: The influence of diet on transplanted and spontaneous mouse tumors. J Exp Med 1914, 20: 433-451. 10.1084/jem.20.5.433CrossRef Rous P: The influence of diet on transplanted and spontaneous mouse tumors. J Exp Med 1914, 20: 433-451. 10.1084/jem.20.5.433CrossRef
59.
go back to reference Yamada KA, Rensing N, Thio LL: Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 2005, 385: 210-214. 10.1016/j.neulet.2005.05.038CrossRef Yamada KA, Rensing N, Thio LL: Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 2005, 385: 210-214. 10.1016/j.neulet.2005.05.038CrossRef
60.
go back to reference Masuda R, Monahan JW, Kashiwaya Y: D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 2005, 80: 501-509. 10.1002/jnr.20464CrossRef Masuda R, Monahan JW, Kashiwaya Y: D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 2005, 80: 501-509. 10.1002/jnr.20464CrossRef
61.
go back to reference Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K: D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease. J Neurosci Res 2006, 84: 1376-1384. 10.1002/jnr.21021CrossRef Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K: D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease. J Neurosci Res 2006, 84: 1376-1384. 10.1002/jnr.21021CrossRef
62.
go back to reference Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL: D-beta-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. Proc Natl Acad Sci USA 2000, 97: 5440-5444. 10.1073/pnas.97.10.5440CrossRef Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL: D-beta-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. Proc Natl Acad Sci USA 2000, 97: 5440-5444. 10.1073/pnas.97.10.5440CrossRef
63.
go back to reference Cahill GF Jr, Veech RL: Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 2003, 114: 149-161. discussion 162–143 Cahill GF Jr, Veech RL: Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 2003, 114: 149-161. discussion 162–143
64.
go back to reference Guzman M, Blazquez C: Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 287-292. 10.1016/j.plefa.2003.05.001CrossRef Guzman M, Blazquez C: Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids 2004, 70: 287-292. 10.1016/j.plefa.2003.05.001CrossRef
65.
go back to reference Magee BA, Potezny N, Rofe AM, Conyers RA: The inhibition of malignant cell growth by ketone bodies. Aust J Exp Biol Med Sci 1979, 57: 529-539.CrossRef Magee BA, Potezny N, Rofe AM, Conyers RA: The inhibition of malignant cell growth by ketone bodies. Aust J Exp Biol Med Sci 1979, 57: 529-539.CrossRef
66.
go back to reference Tisdale MJ, Brennan RA: Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer 1983, 47: 293-297.CrossRef Tisdale MJ, Brennan RA: Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer 1983, 47: 293-297.CrossRef
67.
go back to reference Fredericks M, Ramsey RB: 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem 1978, 31: 1529-1531. 10.1111/j.1471-4159.1978.tb06581.xCrossRef Fredericks M, Ramsey RB: 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem 1978, 31: 1529-1531. 10.1111/j.1471-4159.1978.tb06581.xCrossRef
68.
go back to reference Rofe AM, Bais R, Conyers RA: Ketone-body metabolism in tumour-bearing rats. Biochem J 1986, 233: 485-491.CrossRef Rofe AM, Bais R, Conyers RA: Ketone-body metabolism in tumour-bearing rats. Biochem J 1986, 233: 485-491.CrossRef
69.
go back to reference Warburg O: The Metabolism of Tumours. New York: Richard R. Smith; 1931. Warburg O: The Metabolism of Tumours. New York: Richard R. Smith; 1931.
70.
go back to reference Bowers DC, Liu Y, Leisenring W, McNeil E, Stovall M, Gurney JG, Robison LL, Packer RJ, Oeffinger KC: Late-Occurring Stroke Among Long-Term Survivors of Childhood Leukemia and Brain Tumors: A Report From the Childhood Cancer Survivor Study. J Clin Oncol 2006. Bowers DC, Liu Y, Leisenring W, McNeil E, Stovall M, Gurney JG, Robison LL, Packer RJ, Oeffinger KC: Late-Occurring Stroke Among Long-Term Survivors of Childhood Leukemia and Brain Tumors: A Report From the Childhood Cancer Survivor Study. J Clin Oncol 2006.
71.
go back to reference Clarson CL, Del Maestro RF: Growth failure after treatment of pediatric brain tumors. Pediatrics 1999, 103: E37. 10.1542/peds.103.3.e37CrossRef Clarson CL, Del Maestro RF: Growth failure after treatment of pediatric brain tumors. Pediatrics 1999, 103: E37. 10.1542/peds.103.3.e37CrossRef
72.
go back to reference Birkholz D, Korpal-Szczyrska M, Kaminska H, Bien E, Polczynska K, Stachowicz-Stencel T, Szolkiewicz A: [Influence of surgery and radiotherapy on growth and pubertal development in children treated for brain tumour]. Med Wieku Rozwoj 2005, 9: 463-469. Birkholz D, Korpal-Szczyrska M, Kaminska H, Bien E, Polczynska K, Stachowicz-Stencel T, Szolkiewicz A: [Influence of surgery and radiotherapy on growth and pubertal development in children treated for brain tumour]. Med Wieku Rozwoj 2005, 9: 463-469.
73.
go back to reference Nebeling LC, Lerner E: Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. J Am Diet Assoc 1995, 95: 693-697. 10.1016/S0002-8223(95)00189-1CrossRef Nebeling LC, Lerner E: Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. J Am Diet Assoc 1995, 95: 693-697. 10.1016/S0002-8223(95)00189-1CrossRef
74.
go back to reference Stewart JW, Koehler K, Jackson W, Hawley J, Wang W, Au A, Myers R, Birt DF: Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 2005, 26: 1077-1084. 10.1093/carcin/bgi051CrossRef Stewart JW, Koehler K, Jackson W, Hawley J, Wang W, Au A, Myers R, Birt DF: Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 2005, 26: 1077-1084. 10.1093/carcin/bgi051CrossRef
75.
go back to reference Zhu Z, Jiang W, Thompson HJ: Mechanisms by which energy restriction inhibits rat mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas. Carcinogenesis 2003, 24: 1225-1231. 10.1093/carcin/bgg077CrossRef Zhu Z, Jiang W, Thompson HJ: Mechanisms by which energy restriction inhibits rat mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas. Carcinogenesis 2003, 24: 1225-1231. 10.1093/carcin/bgg077CrossRef
76.
go back to reference Patel NV, Finch CE: The glucocorticoid paradox of caloric restriction in slowing brain aging. Neurobiol Aging 2002, 23: 707-717. 10.1016/S0197-4580(02)00017-9CrossRef Patel NV, Finch CE: The glucocorticoid paradox of caloric restriction in slowing brain aging. Neurobiol Aging 2002, 23: 707-717. 10.1016/S0197-4580(02)00017-9CrossRef
77.
go back to reference Tisdale MJ, Brennan RA, Fearon KC: Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer 1987, 56: 39-43.CrossRef Tisdale MJ, Brennan RA, Fearon KC: Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer 1987, 56: 39-43.CrossRef
78.
go back to reference Mavropoulos JC, Isaacs WB, Pizzo SV, Freedland SJ: Is there a role for a low-carbohydrate ketogenic diet in the management of prostate cancer? Urology 2006, 68: 15-18. 10.1016/j.urology.2006.03.073CrossRef Mavropoulos JC, Isaacs WB, Pizzo SV, Freedland SJ: Is there a role for a low-carbohydrate ketogenic diet in the management of prostate cancer? Urology 2006, 68: 15-18. 10.1016/j.urology.2006.03.073CrossRef
79.
go back to reference Kang HC, Kim HD: Diet therapy in refractory pediatric epilepsy: increased efficacy and tolerability. Epileptic Disord 2006, 8: 309-316. Kang HC, Kim HD: Diet therapy in refractory pediatric epilepsy: increased efficacy and tolerability. Epileptic Disord 2006, 8: 309-316.
80.
go back to reference Pfeifer HH, Thiele EA: Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 2005, 65: 1810-1812. 10.1212/01.wnl.0000187071.24292.9eCrossRef Pfeifer HH, Thiele EA: Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 2005, 65: 1810-1812. 10.1212/01.wnl.0000187071.24292.9eCrossRef
Metadata
Title
The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer
Authors
Weihua Zhou
Purna Mukherjee
Michael A Kiebish
William T Markis
John G Mantis
Thomas N Seyfried
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2007
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-4-5

Other articles of this Issue 1/2007

Nutrition & Metabolism 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.