Skip to main content
Top
Published in: Virology Journal 1/2011

Open Access 01-12-2011 | Research

Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity

Authors: Ling Shao, Xiaoyun Sun, Qin Fang

Published in: Virology Journal | Issue 1/2011

Login to get access

Abstract

Background

Grass carp reovirus (GCRV), which causes severe infectious outbreaks of hemorrhagic disease in aquatic animals, is a highly pathogenic agent in the Aquareovirus genus of family Reoviridae. The outer capsid shell of GCRV, composed of the VP5-VP7 protein complex, is believed to be involved in cell entry. The objective of this study was to produce a major neutralization antibody for mitigating GCRV infection.

Results

Recombinant plasmids of GCRV outer capsid proteins VP5 and VP7 were constructed and expressed in prokaryotic cells in our previous work. In this study, we prepared GCRV Antibody (Ab), VP5Ab and VP7Ab generated from purified native GCRV, recombinant VP5 and VP7 respectively. Immunoblotting analysis showed that the prepared antibodies were specific to its antigens. In addition, combined plaque and cytopathic effect (CPE)-based TCID50 (50% tissue culture infective dose) assays showed that both VP5Ab and VP7Ab were capable of neutralizing viral infectivity. Particularly, the neutralizing activity of VP7Ab was 3 times higher than that of VP5Ab, suggesting that VP7 might be a dominating epitope. Moreover, the combination of VP5Ab and VP7Ab appeared to enhance GCRV neutralizing capacity.

Conclusions

The results presented in this study indicated that VP7 protein was the major epitope of GCRV. Furthermore, VP5Ab and VP7Ab in combination presented an enhanced capacity to neutralize the GCRV particle, suggesting that the VP5 and VP7 proteins may cooperate with each other during virus cell entry. The data can be used not only to further define the surface epitope domain of GCRV but may also be applicable in the designing of vaccines.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mertens PPC, Attoui H, Duncan R, Dermody TS: Reoviridae. In Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego, CA: Elsevier Inc; 2005. Mertens PPC, Attoui H, Duncan R, Dermody TS: Reoviridae. In Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego, CA: Elsevier Inc; 2005.
2.
go back to reference Jiang Y, Ahne W: Some properties of the etiological agent of the hemorrhagic disease of grass carp and black carp. In Viruses of Lower Vertebrates. Edited by: W. Ahne & E. Kurstak. Berlin:Springer-Verlag; 1989:227-239.CrossRef Jiang Y, Ahne W: Some properties of the etiological agent of the hemorrhagic disease of grass carp and black carp. In Viruses of Lower Vertebrates. Edited by: W. Ahne & E. Kurstak. Berlin:Springer-Verlag; 1989:227-239.CrossRef
3.
go back to reference Zhang L, Luo Q, Fang Q, Wang Y: An improved RT-PCR assay for rapid and sensitive detection of grass carp reovirus. J Virol Methods 2010, 169: 28-33. 10.1016/j.jviromet.2010.06.009CrossRefPubMed Zhang L, Luo Q, Fang Q, Wang Y: An improved RT-PCR assay for rapid and sensitive detection of grass carp reovirus. J Virol Methods 2010, 169: 28-33. 10.1016/j.jviromet.2010.06.009CrossRefPubMed
4.
go back to reference Rangel AA, Rockemann DD, Hetrick FM, Samal SK: Identification of grass carp hemorrhage virus as a new genogroup of Aquareovirus. J Gen Virol 1999, 80: 2399-2402.CrossRefPubMed Rangel AA, Rockemann DD, Hetrick FM, Samal SK: Identification of grass carp hemorrhage virus as a new genogroup of Aquareovirus. J Gen Virol 1999, 80: 2399-2402.CrossRefPubMed
5.
go back to reference Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q, Cantaloube JF, Biagini P, de Micco P, Mertens PPC, Attoui H: Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology 2008,373(2):310-321. 10.1016/j.virol.2007.12.006CrossRefPubMed Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q, Cantaloube JF, Biagini P, de Micco P, Mertens PPC, Attoui H: Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology 2008,373(2):310-321. 10.1016/j.virol.2007.12.006CrossRefPubMed
6.
go back to reference Fang Q, Shah S, Liang Y, Zhou ZH: 3D reconstruction and capsid protein character-ization of grass carp reovirus. Sci China C Life Sci 2005, 48: 593-600. 10.1360/062004-105CrossRefPubMed Fang Q, Shah S, Liang Y, Zhou ZH: 3D reconstruction and capsid protein character-ization of grass carp reovirus. Sci China C Life Sci 2005, 48: 593-600. 10.1360/062004-105CrossRefPubMed
7.
go back to reference Fang Q, Attoui H, Biagini JFP, Zhu ZY, de Micco P, de Lamballerie X: Sequence of genome segments 1,2 and 3 of the grass carp reovirus(Genus Aquareovirus,Family Reoviridae). Biochem Biophl Res Co 2000,274(3):762-766. 10.1006/bbrc.2000.3215CrossRef Fang Q, Attoui H, Biagini JFP, Zhu ZY, de Micco P, de Lamballerie X: Sequence of genome segments 1,2 and 3 of the grass carp reovirus(Genus Aquareovirus,Family Reoviridae). Biochem Biophl Res Co 2000,274(3):762-766. 10.1006/bbrc.2000.3215CrossRef
8.
go back to reference Attoui H, Fang Q, Mohd Jaafar F, Cantaloube JF, Biagini P, de Micco P, De Lamballerie X: Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and Golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol 2002, 83: 1941-1951.CrossRefPubMed Attoui H, Fang Q, Mohd Jaafar F, Cantaloube JF, Biagini P, de Micco P, De Lamballerie X: Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and Golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol 2002, 83: 1941-1951.CrossRefPubMed
9.
go back to reference Subramanian K, Lupiani B, Hetrick FM, Samal SK: Detection of Aquareovirus RNA in fish tissues by nucleic acid hybridization with a cloned cDNA probe. J Clin Microbiol 1993, 31: 1612-1614.PubMedCentralPubMed Subramanian K, Lupiani B, Hetrick FM, Samal SK: Detection of Aquareovirus RNA in fish tissues by nucleic acid hybridization with a cloned cDNA probe. J Clin Microbiol 1993, 31: 1612-1614.PubMedCentralPubMed
10.
go back to reference Subramanian K, Hetrick FM, Samal SK: Identification of a new genogroup of aquareovirus by RNA-RNA hybridization. J Gen Virol 1997, 78: 1385-1388.CrossRefPubMed Subramanian K, Hetrick FM, Samal SK: Identification of a new genogroup of aquareovirus by RNA-RNA hybridization. J Gen Virol 1997, 78: 1385-1388.CrossRefPubMed
11.
go back to reference Fang Q, Ke LH, Cai YQ: Growth characterization and high titre culture of GCHV. Virol Sin 1989, 4: 315-319. Fang Q, Ke LH, Cai YQ: Growth characterization and high titre culture of GCHV. Virol Sin 1989, 4: 315-319.
12.
go back to reference Ke LH, Fang Q, Cai YQ: Characteristics of a new isolation of hemorrhagic virus of grass carp. Acta Hydrobiol Sin 1990, 14: 153-159. Ke LH, Fang Q, Cai YQ: Characteristics of a new isolation of hemorrhagic virus of grass carp. Acta Hydrobiol Sin 1990, 14: 153-159.
13.
go back to reference Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH: Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 2008, 382: 213-222. 10.1016/j.jmb.2008.06.075PubMedCentralCrossRefPubMed Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH: Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 2008, 382: 213-222. 10.1016/j.jmb.2008.06.075PubMedCentralCrossRefPubMed
14.
go back to reference Cheng L, Zhu J, Hui WH, Zhang X, Honig B, Fang Q, Zhou ZH: Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. J Mol Biol 2010, 397: 852-863. 10.1016/j.jmb.2009.12.027PubMedCentralCrossRefPubMed Cheng L, Zhu J, Hui WH, Zhang X, Honig B, Fang Q, Zhou ZH: Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. J Mol Biol 2010, 397: 852-863. 10.1016/j.jmb.2009.12.027PubMedCentralCrossRefPubMed
15.
go back to reference Liemann S, Chandran K, Nibert ML, Harrison SC: Structure of the reovirus membrane penetration protein, μ1, in a complex with its protector protein, σ3. Cell 2002, 108: 283-295. 10.1016/S0092-8674(02)00612-8PubMedCentralCrossRefPubMed Liemann S, Chandran K, Nibert ML, Harrison SC: Structure of the reovirus membrane penetration protein, μ1, in a complex with its protector protein, σ3. Cell 2002, 108: 283-295. 10.1016/S0092-8674(02)00612-8PubMedCentralCrossRefPubMed
16.
go back to reference Fang Q, Seng E, Ding QQ, Zhang LL: Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol 2008,153(4):675-682. 10.1007/s00705-008-0048-3CrossRefPubMed Fang Q, Seng E, Ding QQ, Zhang LL: Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol 2008,153(4):675-682. 10.1007/s00705-008-0048-3CrossRefPubMed
17.
go back to reference Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH: 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 2010, 141: 472-482. 10.1016/j.cell.2010.03.041PubMedCentralCrossRefPubMed Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH: 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 2010, 141: 472-482. 10.1016/j.cell.2010.03.041PubMedCentralCrossRefPubMed
18.
go back to reference Odegard AL, Chanfran K, Zhang X, Parker JSL, Baker TS, Nibert ML: Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J Virol 2004,78(16):8732-8745. 10.1128/JVI.78.16.8732-8745.2004PubMedCentralCrossRefPubMed Odegard AL, Chanfran K, Zhang X, Parker JSL, Baker TS, Nibert ML: Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J Virol 2004,78(16):8732-8745. 10.1128/JVI.78.16.8732-8745.2004PubMedCentralCrossRefPubMed
19.
go back to reference Agosto MA, Myers KS, Ivanovic T, Nibert ML: A positive feedback mechanism promotes reovirus particle conversion to the intermediate associated with membrane penetration. Proc Natl Acad Sci 2008, 105: 10571-10576. 10.1073/pnas.0802039105PubMedCentralCrossRefPubMed Agosto MA, Myers KS, Ivanovic T, Nibert ML: A positive feedback mechanism promotes reovirus particle conversion to the intermediate associated with membrane penetration. Proc Natl Acad Sci 2008, 105: 10571-10576. 10.1073/pnas.0802039105PubMedCentralCrossRefPubMed
20.
go back to reference Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML: Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J 2008, 27: 1289-1298. 10.1038/emboj.2008.60PubMedCentralCrossRefPubMed Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML: Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J 2008, 27: 1289-1298. 10.1038/emboj.2008.60PubMedCentralCrossRefPubMed
21.
go back to reference Zhang LL, Shen JY, Lei CF, Li XM, Fang Q: The High Level Expression of Grass carp reovirus VP7 Protein in Prokaryotic Cells. Virol Sin 2008,23(1):51-56. 10.1007/s12250-008-2921-3CrossRef Zhang LL, Shen JY, Lei CF, Li XM, Fang Q: The High Level Expression of Grass carp reovirus VP7 Protein in Prokaryotic Cells. Virol Sin 2008,23(1):51-56. 10.1007/s12250-008-2921-3CrossRef
22.
go back to reference Zhang LL, Lei CF, Fan C, Fang Q: Expression of Outer Capsid Protein VP5 of Grass Carp Reovirus in E.coli and Analysis of its Immunogenicity. Virol Sin 2009,24(6):545-551. 10.1007/s12250-009-3038-zCrossRef Zhang LL, Lei CF, Fan C, Fang Q: Expression of Outer Capsid Protein VP5 of Grass Carp Reovirus in E.coli and Analysis of its Immunogenicity. Virol Sin 2009,24(6):545-551. 10.1007/s12250-009-3038-zCrossRef
23.
go back to reference Zuo WG, Qian HX, Xue YF, Du SY, Yang XL: A Cell Line Derived from the Kidney of Grass Carp. J Fish China 1986, 10: 11-17. Zuo WG, Qian HX, Xue YF, Du SY, Yang XL: A Cell Line Derived from the Kidney of Grass Carp. J Fish China 1986, 10: 11-17.
24.
go back to reference Virgin HW, Bassel-Duby IVR, Fields BN, Tyler KL: Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J Virol 1988, 62: 4594-4604.PubMedCentralPubMed Virgin HW, Bassel-Duby IVR, Fields BN, Tyler KL: Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J Virol 1988, 62: 4594-4604.PubMedCentralPubMed
25.
go back to reference Reed L, Muench H: A simple method of estimating fifty percent endpoints. Am J Hyg 1938, 27: 493-497. Reed L, Muench H: A simple method of estimating fifty percent endpoints. Am J Hyg 1938, 27: 493-497.
26.
go back to reference Tillotson L, Shatkin AJ: Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide μ1 are required for site-specific cleavage to μ1C in transfected cells. J Virol 1992, 66: 2180-2186.PubMedCentralPubMed Tillotson L, Shatkin AJ: Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide μ1 are required for site-specific cleavage to μ1C in transfected cells. J Virol 1992, 66: 2180-2186.PubMedCentralPubMed
27.
go back to reference Nibert ML, Chappell JD, Dermody TS: Infectious subvirion particles of reovirus type 3 Dearing exhibit a loss in infectivity and contain a cleaved sigma1 protein. J Virol 1995, 69: 5057-5067.PubMedCentralPubMed Nibert ML, Chappell JD, Dermody TS: Infectious subvirion particles of reovirus type 3 Dearing exhibit a loss in infectivity and contain a cleaved sigma1 protein. J Virol 1995, 69: 5057-5067.PubMedCentralPubMed
28.
go back to reference McPhillips TH, Dinan D, Subramanian K, Samal SK: Enhancement of aquareovirus infectivity by treatment with proteases: Mechanism of Action. J Virol 1998, 72: 3387-3389.PubMedCentralPubMed McPhillips TH, Dinan D, Subramanian K, Samal SK: Enhancement of aquareovirus infectivity by treatment with proteases: Mechanism of Action. J Virol 1998, 72: 3387-3389.PubMedCentralPubMed
Metadata
Title
Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity
Authors
Ling Shao
Xiaoyun Sun
Qin Fang
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2011
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-8-347

Other articles of this Issue 1/2011

Virology Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.