Skip to main content
Top
Published in: Virology Journal 1/2011

Open Access 01-12-2011 | Research

Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

Authors: Balakrishnan Anukumar, Prajakta Shahir

Published in: Virology Journal | Issue 1/2011

Login to get access

Abstract

Back ground

Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID) etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice.

Method

In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer.

Results

The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical) compared to the normal lymphocytes. Greater percentage of these atypical lymphocytes expressed Fas Ligand and Programmed Death1 (PD-1) receptor.

Conclusion

From these results we concluded that virus specific CD4+T regulatory cells are generated during Chandipura virus infection in mice and these cells might control the activated lymphocytes during infection by different mechanism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rao BL, Basu A, Wairagkar NS, Gore MM, Arankalle VA, Thakare JP, Jadi RS, Rao KA, Mishra AC: A large outbreak of acute encephalitis with high fatality rate in children in Andrapradesh, India, in 2003, associated with Chandipura virus. Lancet 2004, 364: 869-874. 10.1016/S0140-6736(04)16982-1CrossRefPubMed Rao BL, Basu A, Wairagkar NS, Gore MM, Arankalle VA, Thakare JP, Jadi RS, Rao KA, Mishra AC: A large outbreak of acute encephalitis with high fatality rate in children in Andrapradesh, India, in 2003, associated with Chandipura virus. Lancet 2004, 364: 869-874. 10.1016/S0140-6736(04)16982-1CrossRefPubMed
2.
go back to reference Chadha MS, Arankalle VA, Jadi RS, Joshi MV, Thakare JP, Mahadev PVM, Mishra AC: An outbreak of Chandipura virus encephalitis in the eastern districts of Gujarat state, India. Am J Trop Med 2005, 73: 566-570. Chadha MS, Arankalle VA, Jadi RS, Joshi MV, Thakare JP, Mahadev PVM, Mishra AC: An outbreak of Chandipura virus encephalitis in the eastern districts of Gujarat state, India. Am J Trop Med 2005, 73: 566-570.
3.
go back to reference Bhatt PN, Rodrigues FM: Chandipura virus: a new arbovirus isolated in India from patients with febrile illness. Indian J Med Res 1967, 55: 1295-1305.PubMed Bhatt PN, Rodrigues FM: Chandipura virus: a new arbovirus isolated in India from patients with febrile illness. Indian J Med Res 1967, 55: 1295-1305.PubMed
4.
go back to reference Jortner BS, Bhatt PN, Solitare GB: Experimental chandipura virus infection in mice.I.Virus assay and light microscopic studies with emphasis on neuropathologic observations. Acta Neuropathologica 1973, 23: 320-325. 10.1007/BF00687461CrossRefPubMed Jortner BS, Bhatt PN, Solitare GB: Experimental chandipura virus infection in mice.I.Virus assay and light microscopic studies with emphasis on neuropathologic observations. Acta Neuropathologica 1973, 23: 320-325. 10.1007/BF00687461CrossRefPubMed
5.
go back to reference Sokhei CH, Obukhova VR: Susceptiblity of laboratory animals to the chandipura and isfahan viruses. Vopr virusol 1984, 29: 290-294.PubMed Sokhei CH, Obukhova VR: Susceptiblity of laboratory animals to the chandipura and isfahan viruses. Vopr virusol 1984, 29: 290-294.PubMed
6.
go back to reference Anukumar B, Mishra AC: Immune response during acute Chandipura viral infection in experimentally infected susceptible mice. Virol J 2008, 5: 1-11. 10.1186/1743-422X-5-1CrossRef Anukumar B, Mishra AC: Immune response during acute Chandipura viral infection in experimentally infected susceptible mice. Virol J 2008, 5: 1-11. 10.1186/1743-422X-5-1CrossRef
7.
go back to reference Nichols JE, Niles JA, Roberts NJJ: Human lymphocyte apoptosis after exposure to influenza A virus. J Virol 2001, 73: 5921-5929.CrossRef Nichols JE, Niles JA, Roberts NJJ: Human lymphocyte apoptosis after exposure to influenza A virus. J Virol 2001, 73: 5921-5929.CrossRef
8.
go back to reference Roe MFE, Bloxham DM, White DK, Ross-Russell RI, Tasker RTC, O'Donnell DR: Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis. Clin Exp Immunol 2004, 137: 139-145. 10.1111/j.1365-2249.2004.02512.xPubMedCentralCrossRefPubMed Roe MFE, Bloxham DM, White DK, Ross-Russell RI, Tasker RTC, O'Donnell DR: Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis. Clin Exp Immunol 2004, 137: 139-145. 10.1111/j.1365-2249.2004.02512.xPubMedCentralCrossRefPubMed
9.
go back to reference Sanchez-Cordon PJ, Nunez A, Salguero Fj, Pedrera M, Fernandez De Marco M, Gomez-Villamandos JC: Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol 2005, 42: 477-488. 10.1354/vp.42-4-477CrossRefPubMed Sanchez-Cordon PJ, Nunez A, Salguero Fj, Pedrera M, Fernandez De Marco M, Gomez-Villamandos JC: Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol 2005, 42: 477-488. 10.1354/vp.42-4-477CrossRefPubMed
11.
go back to reference Sakaguchi S: Regulatory T cells: Key controllers of immunologic self tolerance. Cell 2000, 101: 455-458. 10.1016/S0092-8674(00)80856-9CrossRefPubMed Sakaguchi S: Regulatory T cells: Key controllers of immunologic self tolerance. Cell 2000, 101: 455-458. 10.1016/S0092-8674(00)80856-9CrossRefPubMed
12.
go back to reference Feunou P, Poulin L, Habran C, Le Moine A, Goldman M, Brduscha-Riem K: CD4+CD25+ and CD4+CD25+T cells act respectively as inducer and effector T suppressor cells in superantigen induced tolerance. J Immunol 2003, 171: 347534-84.CrossRef Feunou P, Poulin L, Habran C, Le Moine A, Goldman M, Brduscha-Riem K: CD4+CD25+ and CD4+CD25+T cells act respectively as inducer and effector T suppressor cells in superantigen induced tolerance. J Immunol 2003, 171: 347534-84.CrossRef
13.
go back to reference Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4: 330-336.CrossRefPubMed Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4: 330-336.CrossRefPubMed
14.
go back to reference Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Bucker JH, Zimmerman C: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25+ T cells. J Clin Invest 2003, 112: 1437-1443.CrossRefPubMed Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Bucker JH, Zimmerman C: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25+ T cells. J Clin Invest 2003, 112: 1437-1443.CrossRefPubMed
15.
go back to reference Maher Stephen, Toomey Deirdre, Condron Claire, Bouchier-Hayes David: Activation-induced cell death: The controversial role of Fas and Fas ligand in immune privilege and tumour counter attack. Immunol Cell Biol 2002, 80: 131-137. 10.1046/j.1440-1711.2002.01068.xCrossRefPubMed Maher Stephen, Toomey Deirdre, Condron Claire, Bouchier-Hayes David: Activation-induced cell death: The controversial role of Fas and Fas ligand in immune privilege and tumour counter attack. Immunol Cell Biol 2002, 80: 131-137. 10.1046/j.1440-1711.2002.01068.xCrossRefPubMed
16.
go back to reference Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharp AH, Freeman GJ, Ahmed R: Restoring function in exhaused CD8T cells during chronic viral infection. Nature 2006, 439: 682-687. 10.1038/nature04444CrossRefPubMed Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharp AH, Freeman GJ, Ahmed R: Restoring function in exhaused CD8T cells during chronic viral infection. Nature 2006, 439: 682-687. 10.1038/nature04444CrossRefPubMed
17.
go back to reference Petrovas C, Price DA, Mattapalli J, Ambrozak DR, Geldmacher C, Cecchinato V, Vaccari M, Tryniszewska E, Gostick E, Roederer M, Douek DC, Morgan SH, Davis SJ, Franchini G, Koup RA: SIV-specific CD8+T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIV mac 251 infection. Blood 2007, 110: 928-936. 10.1182/blood-2007-01-069112PubMedCentralCrossRefPubMed Petrovas C, Price DA, Mattapalli J, Ambrozak DR, Geldmacher C, Cecchinato V, Vaccari M, Tryniszewska E, Gostick E, Roederer M, Douek DC, Morgan SH, Davis SJ, Franchini G, Koup RA: SIV-specific CD8+T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIV mac 251 infection. Blood 2007, 110: 928-936. 10.1182/blood-2007-01-069112PubMedCentralCrossRefPubMed
18.
go back to reference Kasprowicz V, Schulze Zur Wiesch J, Kuntzen T, Nolan BE, Longworth S, Berical A, Blum J, McMahon C, Reyor LL, Elias N, Kwok WW, McGovern BG, Freeman G, Chung RT, Klenerman P, Lewis-Ximenez L, Walker BD, Allen TM, Kim AY, Lauer GM: High level of PD-1 expression on hepatitis C virus (HCV) specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol 2008, 82: 3154-3160. 10.1128/JVI.02474-07PubMedCentralCrossRefPubMed Kasprowicz V, Schulze Zur Wiesch J, Kuntzen T, Nolan BE, Longworth S, Berical A, Blum J, McMahon C, Reyor LL, Elias N, Kwok WW, McGovern BG, Freeman G, Chung RT, Klenerman P, Lewis-Ximenez L, Walker BD, Allen TM, Kim AY, Lauer GM: High level of PD-1 expression on hepatitis C virus (HCV) specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol 2008, 82: 3154-3160. 10.1128/JVI.02474-07PubMedCentralCrossRefPubMed
19.
go back to reference Peng G, Shaping Li, Wu Wein, Tan Xufei, Chen Yiqiong, Chen Zhi: PD-1 upregulation is associated with HBV specific T cells dysfunction in chronic hepatitis B patients. Mol Immunol 2008, 45: 963-970. 10.1016/j.molimm.2007.07.038CrossRefPubMed Peng G, Shaping Li, Wu Wein, Tan Xufei, Chen Yiqiong, Chen Zhi: PD-1 upregulation is associated with HBV specific T cells dysfunction in chronic hepatitis B patients. Mol Immunol 2008, 45: 963-970. 10.1016/j.molimm.2007.07.038CrossRefPubMed
20.
go back to reference Simon MW: The Atypical Lymphocyte. Int Pediatr 2003, 18: 20-22. Simon MW: The Atypical Lymphocyte. Int Pediatr 2003, 18: 20-22.
21.
go back to reference Blank C, Mackensen A: Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007, 56: 739-745. 10.1007/s00262-006-0272-1CrossRefPubMed Blank C, Mackensen A: Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007, 56: 739-745. 10.1007/s00262-006-0272-1CrossRefPubMed
22.
go back to reference Ishida Y, Agata Y, Shibahara K, Honjo T: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992, 11: 3887-3895.PubMedCentralPubMed Ishida Y, Agata Y, Shibahara K, Honjo T: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992, 11: 3887-3895.PubMedCentralPubMed
23.
go back to reference Kozaka T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y, Akimoto M, Suzuki S, Matsushita K, Uozumi K, Tei C, Arima N: PD-1/PD-L1 expression in human T- cell leukemia virus type 1 carriers and adult T- cell leukemia/lymphoma patients. Leukemia 2009, 23: 375-382. 10.1038/leu.2008.272CrossRef Kozaka T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y, Akimoto M, Suzuki S, Matsushita K, Uozumi K, Tei C, Arima N: PD-1/PD-L1 expression in human T- cell leukemia virus type 1 carriers and adult T- cell leukemia/lymphoma patients. Leukemia 2009, 23: 375-382. 10.1038/leu.2008.272CrossRef
Metadata
Title
Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice
Authors
Balakrishnan Anukumar
Prajakta Shahir
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2011
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-8-259

Other articles of this Issue 1/2011

Virology Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.