Skip to main content
Top
Published in: Virology Journal 1/2011

Open Access 01-12-2011 | Hypothesis

Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa

Author: Philip S Rice

Published in: Virology Journal | Issue 1/2011

Login to get access

Abstract

Background

Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection.

Presentation of the hypothesis

Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity.

Testing the Hypothesis

The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR.

Implications of the hypothesis

The ancestral varicella-zoster virus, most probably a tropical genotype, co-migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of this virus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Varicella zoster virus: Virology and clinical management. Edited by: Arvin AA, Gershon AA. CUP; 2000. Varicella zoster virus: Virology and clinical management. Edited by: Arvin AA, Gershon AA. CUP; 2000.
2.
go back to reference Fenner F: The pathogenesis of the acute exanthems; an interpretation based on experimental investigations with mousepox; infectious ectromelia of mice. Lancet 1948, 2: 915-20.CrossRefPubMed Fenner F: The pathogenesis of the acute exanthems; an interpretation based on experimental investigations with mousepox; infectious ectromelia of mice. Lancet 1948, 2: 915-20.CrossRefPubMed
3.
go back to reference Grose C: Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 1981, 68: 735-7.PubMed Grose C: Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 1981, 68: 735-7.PubMed
4.
go back to reference Ozaki T, Matsui Y, Asano Y, Okuno T, Yamanishi K, Takahashi M: Study of virus isolation from pharyngeal swabs in children with varicella. Am J Dis Child 1989, 143: 1448-50.PubMed Ozaki T, Matsui Y, Asano Y, Okuno T, Yamanishi K, Takahashi M: Study of virus isolation from pharyngeal swabs in children with varicella. Am J Dis Child 1989, 143: 1448-50.PubMed
5.
go back to reference Asano Y, Yoshikawa T, Ihira M, Furukawa H, Suzuki K, Suga S: Spread of varicella-zoster virus DNA to family members and environments from siblings with varicella in a household. 1999, 103: e61. Asano Y, Yoshikawa T, Ihira M, Furukawa H, Suzuki K, Suga S: Spread of varicella-zoster virus DNA to family members and environments from siblings with varicella in a household. 1999, 103: e61.
6.
go back to reference Sawyer MH, Wu YN, Chamberlin CJ, et al.: Detection of varicella-zoster virus DNA in the oropharynx and blood of patients with varicella. J Infect Dis 1992, 166: 885-8. 10.1093/infdis/166.4.885CrossRefPubMed Sawyer MH, Wu YN, Chamberlin CJ, et al.: Detection of varicella-zoster virus DNA in the oropharynx and blood of patients with varicella. J Infect Dis 1992, 166: 885-8. 10.1093/infdis/166.4.885CrossRefPubMed
7.
go back to reference Gordon JR, Meader FM: The period of infectivity and serum prevention of chickenpox. JAMA 1929, 93: 2013-15.CrossRef Gordon JR, Meader FM: The period of infectivity and serum prevention of chickenpox. JAMA 1929, 93: 2013-15.CrossRef
9.
go back to reference Brunell PA: Transmission of chickenpox in a school setting prior to the observed exanthem. Am J Dis Child 1989, 143: 1451-2.PubMed Brunell PA: Transmission of chickenpox in a school setting prior to the observed exanthem. Am J Dis Child 1989, 143: 1451-2.PubMed
10.
go back to reference Leclair JM, Zaia JA, Levin MJ, Congdon RG, Goldmann DA: Airborne transmission of chickenpox in a hospital. New Engl J Med 1980, 302: 450-3. 10.1056/NEJM198002213020807CrossRefPubMed Leclair JM, Zaia JA, Levin MJ, Congdon RG, Goldmann DA: Airborne transmission of chickenpox in a hospital. New Engl J Med 1980, 302: 450-3. 10.1056/NEJM198002213020807CrossRefPubMed
11.
go back to reference Joarder AK, Tarantola D, Tulloch J: The eradication of smallpox from Bangladesh, New Delhi. Geneva, Switzerland: WHO Regional Publications; 1980. Joarder AK, Tarantola D, Tulloch J: The eradication of smallpox from Bangladesh, New Delhi. Geneva, Switzerland: WHO Regional Publications; 1980.
12.
go back to reference Garnett GP, Cox MJ, Bundy DA, Didier JM, St Catharine J: The age of infection with varicella-zoster virus in St Lucia, West Indies. Epidemiol Infect 1993, 110: 361-72. 10.1017/S0950268800068308CrossRefPubMed Garnett GP, Cox MJ, Bundy DA, Didier JM, St Catharine J: The age of infection with varicella-zoster virus in St Lucia, West Indies. Epidemiol Infect 1993, 110: 361-72. 10.1017/S0950268800068308CrossRefPubMed
13.
go back to reference Loparev VN, Gonzalez A, Deleon-Carnes M, et al.: Global identification of three major genotypes of varicella-zoster virus: longitudinal clustering and strategies for genotyping. J Virol 2004, 78: 8349-58. 10.1128/JVI.78.15.8349-8358.2004CrossRefPubMed Loparev VN, Gonzalez A, Deleon-Carnes M, et al.: Global identification of three major genotypes of varicella-zoster virus: longitudinal clustering and strategies for genotyping. J Virol 2004, 78: 8349-58. 10.1128/JVI.78.15.8349-8358.2004CrossRefPubMed
14.
go back to reference Sengupta N, Breuer J: A global perspective of the epidemiology and burden of varicella-zoster virus. Curr Pediatr Rev 2009, 5: 207-228. 10.2174/157339609791317315CrossRef Sengupta N, Breuer J: A global perspective of the epidemiology and burden of varicella-zoster virus. Curr Pediatr Rev 2009, 5: 207-228. 10.2174/157339609791317315CrossRef
15.
go back to reference Diffey BL: Solar ultraviolet radiation effects on biological systems. Phys Med Biol 1991, 36: 299-328. 10.1088/0031-9155/36/3/001CrossRefPubMed Diffey BL: Solar ultraviolet radiation effects on biological systems. Phys Med Biol 1991, 36: 299-328. 10.1088/0031-9155/36/3/001CrossRefPubMed
16.
go back to reference Maretic Z, Cooray MPM: Comparisons between chickenpox in a tropical and a European country. J Trop Med Hyg 1963, 66: 311-5.PubMed Maretic Z, Cooray MPM: Comparisons between chickenpox in a tropical and a European country. J Trop Med Hyg 1963, 66: 311-5.PubMed
17.
go back to reference White E: Chickenpox in Kerala. Indian J Public Health 1978, 22: 141-51.PubMed White E: Chickenpox in Kerala. Indian J Public Health 1978, 22: 141-51.PubMed
18.
go back to reference Poulsen A, Cabral F, Nielsen J, et al.: Varicella zoster in Guinea-Bissau. Intensity of exposure and severity of infection. Pediatr Infect Dis J 2005, 24: 102-107. 10.1097/01.inf.0000151034.15747.4aCrossRefPubMed Poulsen A, Cabral F, Nielsen J, et al.: Varicella zoster in Guinea-Bissau. Intensity of exposure and severity of infection. Pediatr Infect Dis J 2005, 24: 102-107. 10.1097/01.inf.0000151034.15747.4aCrossRefPubMed
19.
go back to reference Lelieveld J, Crutzen PJ, Ramanathan V, et al.: The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 2001, 291: 1031-6. 10.1126/science.1057103CrossRefPubMed Lelieveld J, Crutzen PJ, Ramanathan V, et al.: The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 2001, 291: 1031-6. 10.1126/science.1057103CrossRefPubMed
20.
go back to reference Mandal BK, Mukherjee PP, Murphy C, Mukherjee R, Naik T: Adult susceptibility to varicella in the tropics is a rural phenomenon due to the lack of previous exposure. J Infect Dis 1998,178(Suppl 1):S52-4.CrossRefPubMed Mandal BK, Mukherjee PP, Murphy C, Mukherjee R, Naik T: Adult susceptibility to varicella in the tropics is a rural phenomenon due to the lack of previous exposure. J Infect Dis 1998,178(Suppl 1):S52-4.CrossRefPubMed
21.
go back to reference Liyanage NPM, Sirimali F, Malavige GN, et al.: Seroprevalence of varicella zoster virus infections in Colombo district, Sri Lanka. Indian J Med Sci 2007, 61: 128-134. 10.4103/0019-5359.30747CrossRefPubMed Liyanage NPM, Sirimali F, Malavige GN, et al.: Seroprevalence of varicella zoster virus infections in Colombo district, Sri Lanka. Indian J Med Sci 2007, 61: 128-134. 10.4103/0019-5359.30747CrossRefPubMed
22.
go back to reference Mims FM: Significant reduction of UVB caused by smoke from biomass burning in Brazil. Photochem Photobiol 1996, 64: 814-6. 10.1111/j.1751-1097.1996.tb01839.xCrossRefPubMed Mims FM: Significant reduction of UVB caused by smoke from biomass burning in Brazil. Photochem Photobiol 1996, 64: 814-6. 10.1111/j.1751-1097.1996.tb01839.xCrossRefPubMed
23.
go back to reference Macneil A, Reynolds MG, Braden Z, et al.: Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin Infect Dis 2009, 48: e6-8. 10.1086/595552CrossRefPubMed Macneil A, Reynolds MG, Braden Z, et al.: Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin Infect Dis 2009, 48: e6-8. 10.1086/595552CrossRefPubMed
24.
go back to reference Rodríguez-Castillo A, Vaughan G, Ramírez-González JE, et al.: Genetic variation of Varicella-Zoster Virus strains circulating in Mexico City. J Clin Virol 2009, 46: 349-53. 10.1016/j.jcv.2009.09.004CrossRefPubMed Rodríguez-Castillo A, Vaughan G, Ramírez-González JE, et al.: Genetic variation of Varicella-Zoster Virus strains circulating in Mexico City. J Clin Virol 2009, 46: 349-53. 10.1016/j.jcv.2009.09.004CrossRefPubMed
25.
go back to reference Lytle CD, Sagripanti JL: Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol 2005, 79: 14244-52. 10.1128/JVI.79.22.14244-14252.2005CrossRefPubMed Lytle CD, Sagripanti JL: Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol 2005, 79: 14244-52. 10.1128/JVI.79.22.14244-14252.2005CrossRefPubMed
26.
go back to reference Bahlke AM, Silverman HF, Ingraham HS: Effect of ultra-violet irradiation of classrooms on spread of mumps and chickenpox in large rural central schools. Am J Pub Hlth 1949, 39: 1321-1330. 10.2105/AJPH.39.10.1321CrossRef Bahlke AM, Silverman HF, Ingraham HS: Effect of ultra-violet irradiation of classrooms on spread of mumps and chickenpox in large rural central schools. Am J Pub Hlth 1949, 39: 1321-1330. 10.2105/AJPH.39.10.1321CrossRef
Metadata
Title
Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa
Author
Philip S Rice
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2011
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-8-189

Other articles of this Issue 1/2011

Virology Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.