Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Research

Locomotor adaptation to a powered ankle-foot orthosis depends on control method

Authors: Stephen M Cain, Keith E Gordon, Daniel P Ferris

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.

Methods

Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.

Results

During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.

Conclusion

These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Kawamoto H, Sankai Y: Power assist system HAL-3 for gait disorder person. In Computer Helping People with Special Needs: 8th International Conference, ICCHP 2002. Lecture Notes in Computer Science. Edited by: Miesenberger K, Klaus J, Zagler W. Berlin: Springer Verlag; 2002:196-203.CrossRef Kawamoto H, Sankai Y: Power assist system HAL-3 for gait disorder person. In Computer Helping People with Special Needs: 8th International Conference, ICCHP 2002. Lecture Notes in Computer Science. Edited by: Miesenberger K, Klaus J, Zagler W. Berlin: Springer Verlag; 2002:196-203.CrossRef
3.
go back to reference Suzuki K, Kawamura Y, Hayashi T, Sakurai T, Hasegawa Y, Sankai Y: Intention-based walking support for paraplegia patient. 2005, 2703: 2707-2713. Suzuki K, Kawamura Y, Hayashi T, Sakurai T, Hasegawa Y, Sankai Y: Intention-based walking support for paraplegia patient. 2005, 2703: 2707-2713.
4.
go back to reference Zoss AB, Kazerooni H, Chu A: Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics 2006, 11: 128-138.CrossRef Zoss AB, Kazerooni H, Chu A: Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics 2006, 11: 128-138.CrossRef
5.
go back to reference Kazerooni H, Steger R: The Berkeley Lower Extremity Exoskeleton. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme 2006, 128: 14-25.CrossRef Kazerooni H, Steger R: The Berkeley Lower Extremity Exoskeleton. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme 2006, 128: 14-25.CrossRef
6.
go back to reference Jacobsen SC, Olivier M, Smith FM, Knutti DF, Johnson RT, Colvin GE, Scroggin WB: Research robots for applications in artificial intelligence, teleoperation and entertainment. International Journal of Robotics Research 2004, 23: 319-330.CrossRef Jacobsen SC, Olivier M, Smith FM, Knutti DF, Johnson RT, Colvin GE, Scroggin WB: Research robots for applications in artificial intelligence, teleoperation and entertainment. International Journal of Robotics Research 2004, 23: 319-330.CrossRef
7.
go back to reference Pratt JE, Krupp BT, Morse CJ, Collins SH: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In IEEE International Conference on Robotics and Automation; New Orleans, LA. IEEE Press; 2004:2430-2435. Pratt JE, Krupp BT, Morse CJ, Collins SH: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In IEEE International Conference on Robotics and Automation; New Orleans, LA. IEEE Press; 2004:2430-2435.
8.
go back to reference Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2004, 12: 24-31.CrossRefPubMed Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2004, 12: 24-31.CrossRefPubMed
9.
go back to reference Kazerooni H, Steger R, Huang L: Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). International Journal of Robotics Research 2006, 25: 561-573.CrossRef Kazerooni H, Steger R, Huang L: Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). International Journal of Robotics Research 2006, 25: 561-573.CrossRef
10.
go back to reference Ghan J, Steger R, Kazerooni H: Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX). Advanced Robotics 2006, 20: 989-1014.CrossRef Ghan J, Steger R, Kazerooni H: Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX). Advanced Robotics 2006, 20: 989-1014.CrossRef
11.
go back to reference Kawamoto H, Sankai Y: Power assist method based on Phase Sequence and muscle force condition for HAL. Advanced Robotics 2005, 19: 717-734.CrossRef Kawamoto H, Sankai Y: Power assist method based on Phase Sequence and muscle force condition for HAL. Advanced Robotics 2005, 19: 717-734.CrossRef
12.
go back to reference Hayashi T, Kawamoto H, Sankai Y: Control method of robot suit HAL working as operator's muscle using biological and dynamical information. 2005, 3063-3068. Hayashi T, Kawamoto H, Sankai Y: Control method of robot suit HAL working as operator's muscle using biological and dynamical information. 2005, 3063-3068.
13.
go back to reference Kawamoto H, Lee S, Kanbe S, Sankai Y: Power assist method for HAL-3 using EMG-based feedback controller. International Conference on Systems, Man and Cybernetics; October 5–8. IEEE 2003, 1648-1653. Kawamoto H, Lee S, Kanbe S, Sankai Y: Power assist method for HAL-3 using EMG-based feedback controller. International Conference on Systems, Man and Cybernetics; October 5–8. IEEE 2003, 1648-1653.
14.
go back to reference Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics 2005, 21: 189-197.PubMedCentralPubMed Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics 2005, 21: 189-197.PubMedCentralPubMed
15.
go back to reference Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 2006,23(4):425-428.CrossRefPubMed Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 2006,23(4):425-428.CrossRefPubMed
16.
go back to reference Gordon KE, Sawicki GS, Ferris DP: Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 2006, 39: 1832-1841.CrossRefPubMed Gordon KE, Sawicki GS, Ferris DP: Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 2006, 39: 1832-1841.CrossRefPubMed
17.
go back to reference Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil 2006, 3: 3.PubMedCentralCrossRefPubMed Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil 2006, 3: 3.PubMedCentralCrossRefPubMed
18.
go back to reference Gordon KE, Ferris DP: Learning to walk with a robotic ankle exoskeleton. J Biomech 2007,40(12):2636-2644.CrossRefPubMed Gordon KE, Ferris DP: Learning to walk with a robotic ankle exoskeleton. J Biomech 2007,40(12):2636-2644.CrossRefPubMed
19.
go back to reference Browning RC, Modica JR, Kram R, Goswami A: The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 2007, 39: 515-525.CrossRefPubMed Browning RC, Modica JR, Kram R, Goswami A: The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 2007, 39: 515-525.CrossRefPubMed
20.
go back to reference Aaron SL, Stein RB: Comparison of an EMG-controlled prosthesis and the normal human biceps brachii muscle. Am J Phys Med 1976, 55: 1-14.PubMed Aaron SL, Stein RB: Comparison of an EMG-controlled prosthesis and the normal human biceps brachii muscle. Am J Phys Med 1976, 55: 1-14.PubMed
21.
go back to reference Noble JW, Prentice SD: Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp Brain Res 2006,169(4):482-495.CrossRefPubMed Noble JW, Prentice SD: Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp Brain Res 2006,169(4):482-495.CrossRefPubMed
22.
go back to reference Wolpert DM, Ghahramani Z: Computational principles of movement neuroscience. Nat Neurosci 2000, 3: 1212-1217.CrossRefPubMed Wolpert DM, Ghahramani Z: Computational principles of movement neuroscience. Nat Neurosci 2000, 3: 1212-1217.CrossRefPubMed
23.
go back to reference Rall JA: Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev 1985, 13: 33-74.PubMed Rall JA: Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc Sport Sci Rev 1985, 13: 33-74.PubMed
24.
go back to reference Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP: Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait Posture 2007,25(4):620-627.CrossRefPubMed Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP: Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait Posture 2007,25(4):620-627.CrossRefPubMed
25.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383.CrossRefPubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 2006, 168: 368-383.CrossRefPubMed
Metadata
Title
Locomotor adaptation to a powered ankle-foot orthosis depends on control method
Authors
Stephen M Cain
Keith E Gordon
Daniel P Ferris
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-48

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue