Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Methodology

Gait rehabilitation machines based on programmable footplates

Authors: Henning Schmidt, Cordula Werner, Rolf Bernhardt, Stefan Hesse, Jörg Krüger

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing.

Results

With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations.

Conclusion

Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning promoting a task-specific repetitive approach. Sophisticated technical developments and positive randomized controlled trials form the basis of a growing acceptance worldwide to the benefits or our patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kolominsky-Rabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, Katalinic A, Lang E, Gassman KG, von Stockert TR: A prospective community-based study of stroke in Germany: the Erlangen Stroke Project (ESPro): incidence and case fatality at 1, 3, and 12 months. Stroke 1998, (29):2501-2506. Kolominsky-Rabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, Katalinic A, Lang E, Gassman KG, von Stockert TR: A prospective community-based study of stroke in Germany: the Erlangen Stroke Project (ESPro): incidence and case fatality at 1, 3, and 12 months. Stroke 1998, (29):2501-2506.
2.
go back to reference Carr JH, Shepherd RB: Neurological Rehabilitation: Optimizing Motor Performance. Butterworth-Heinemann; 1998. Carr JH, Shepherd RB: Neurological Rehabilitation: Optimizing Motor Performance. Butterworth-Heinemann; 1998.
3.
go back to reference Asanuma H, Keller A: Neurobiological basis of motor learning and memory. Concepts Neuroscience 1991, 2: 1-30. Asanuma H, Keller A: Neurobiological basis of motor learning and memory. Concepts Neuroscience 1991, 2: 1-30.
4.
go back to reference Hesse S, Helm B, Krajnik J, Gregoric M, Mauritz KH: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. J Neurol Rehab 1997, 11: 15-20. Hesse S, Helm B, Krajnik J, Gregoric M, Mauritz KH: Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. J Neurol Rehab 1997, 11: 15-20.
5.
go back to reference Carr JH, Shepherd RB: A Motor Relearning Programme for Stroke. 2nd edition. Aspen Publishers; 1987. Carr JH, Shepherd RB: A Motor Relearning Programme for Stroke. 2nd edition. Aspen Publishers; 1987.
6.
go back to reference Sackley CM, Lincoln NB: Physiotherapy for stroke patients: a survey of current practice. Physiother Theor Pract 1996, (12):87-96. Sackley CM, Lincoln NB: Physiotherapy for stroke patients: a survey of current practice. Physiother Theor Pract 1996, (12):87-96.
7.
8.
go back to reference Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, Mauritz KH: Treadmill training with partial body weight support as compared to physiotherapy in non-ambulatory hemiparetic patients. Stroke 1995, 26: 976-981.CrossRefPubMed Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, Mauritz KH: Treadmill training with partial body weight support as compared to physiotherapy in non-ambulatory hemiparetic patients. Stroke 1995, 26: 976-981.CrossRefPubMed
9.
go back to reference Moseley AM, Stark A, Cameron ID, Pollock A: Treadmill training and body weight support for walking after stroke. The Cochrane Database of Systematic Reviews 2005., 3: Moseley AM, Stark A, Cameron ID, Pollock A: Treadmill training and body weight support for walking after stroke. The Cochrane Database of Systematic Reviews 2005., 3:
10.
go back to reference Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. Journal of Rehabilitation Research & Development 2000,37(6):710-708. Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. Journal of Rehabilitation Research & Development 2000,37(6):710-708.
11.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research & Development 2000,37(6):693-700. Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research & Development 2000,37(6):693-700.
12.
go back to reference HealthSouth Corporation: Powered gait orthosis and method of utilizing same. US Patent: 6,689,075 2004. HealthSouth Corporation: Powered gait orthosis and method of utilizing same. US Patent: 6,689,075 2004.
13.
go back to reference Reinkensmeyer DJ, Wynne JH, Harkema SJ: A robotic tool for studying locomotor adaptation and rehabilitation. Proceedings of the IEEE Engineering in Medicine and Biology Conference (EMBC), Houston, TX, USA 2002. Reinkensmeyer DJ, Wynne JH, Harkema SJ: A robotic tool for studying locomotor adaptation and rehabilitation. Proceedings of the IEEE Engineering in Medicine and Biology Conference (EMBC), Houston, TX, USA 2002.
14.
go back to reference Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H: Design of a Series Elastic- and Bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA 2005, 496-499. Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H: Design of a Series Elastic- and Bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA 2005, 496-499.
15.
go back to reference Montagu A: Touching: The Human Significance of the Skin. 3rd edition. Harper & Row Publishers; 1986. Montagu A: Touching: The Human Significance of the Skin. 3rd edition. Harper & Row Publishers; 1986.
16.
go back to reference Hesse S, Werner C, Uhlenbrock D, v Frankenberg S, Bardeleben A, Brandl-Hesse B: An Electromechanical Gait Trainer for Restoration of Gait in Hemiparetic Stroke Patients: Preliminary Results. Neurorehabilitation and Neural Repair 2001, 15: 39-50.CrossRefPubMed Hesse S, Werner C, Uhlenbrock D, v Frankenberg S, Bardeleben A, Brandl-Hesse B: An Electromechanical Gait Trainer for Restoration of Gait in Hemiparetic Stroke Patients: Preliminary Results. Neurorehabilitation and Neural Repair 2001, 15: 39-50.CrossRefPubMed
17.
go back to reference Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005,86(4):672-680.CrossRefPubMed Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005,86(4):672-680.CrossRefPubMed
18.
go back to reference Werner C, Pohl M, Holzgrefe M, Kroczek G, Mehrholz J, Wingendorf I, Hölig G, Hesse S: "DEGAS" – Deutsche Gangtrainerstudie zur Evaluation des Gangtrainer GT I in Kombination mit Physiotherapie im Vergleich zur Physiotherapie alleine bei akuten Schlaganfallpatienten. Neurologie & Rehabilitation 4/2004, Proceedings of 'Evidence-Based Medicine in Neurorehabilitation', 3rd Joint Congress of the Swiss, Austrian and German Societies of Neurological Rehabilitation, Zurich, Switzerland 2004, S45. Werner C, Pohl M, Holzgrefe M, Kroczek G, Mehrholz J, Wingendorf I, Hölig G, Hesse S: "DEGAS" – Deutsche Gangtrainerstudie zur Evaluation des Gangtrainer GT I in Kombination mit Physiotherapie im Vergleich zur Physiotherapie alleine bei akuten Schlaganfallpatienten. Neurologie & Rehabilitation 4/2004, Proceedings of 'Evidence-Based Medicine in Neurorehabilitation', 3rd Joint Congress of the Swiss, Austrian and German Societies of Neurological Rehabilitation, Zurich, Switzerland 2004, S45.
19.
go back to reference Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hölig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation 2007, 21: 17-27.CrossRefPubMed Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hölig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation 2007, 21: 17-27.CrossRefPubMed
20.
go back to reference Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L: Clinical gait assessment in the neurologically impaired: reliability and meaningfulness. Physical Therapy 1984, 64: 35-40.PubMed Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L: Clinical gait assessment in the neurologically impaired: reliability and meaningfulness. Physical Therapy 1984, 64: 35-40.PubMed
21.
go back to reference Collen FM, Wade DT, Gradshaw CM: Mobility after stroke: reliability of measures of impairment and disability. International Disability Studies 1990, 12: 6-9.CrossRefPubMed Collen FM, Wade DT, Gradshaw CM: Mobility after stroke: reliability of measures of impairment and disability. International Disability Studies 1990, 12: 6-9.CrossRefPubMed
22.
go back to reference Mahoney FI, Barthel DW: Functional evaluation: The Barthel Index. Maryland State Medical Journal 1965, (14):56-61. Mahoney FI, Barthel DW: Functional evaluation: The Barthel Index. Maryland State Medical Journal 1965, (14):56-61.
23.
go back to reference Globokar D: Gait trainer in neurorehabilitation of patients after stroke. Proceedings of the 3rd World Congress of the International Society of Physical and Rehabilitation Medicine (ISPRM) 2005, Sao Paulo, Brazil 2005, 166. Abstract 987-1 Globokar D: Gait trainer in neurorehabilitation of patients after stroke. Proceedings of the 3rd World Congress of the International Society of Physical and Rehabilitation Medicine (ISPRM) 2005, Sao Paulo, Brazil 2005, 166. Abstract 987-1
24.
go back to reference Jang SJ, Park SW, Kim ES, Wee HM, Kim YH: Electromechanical gait trainer for restoring gait in hemiparetic stroke patients. Proceedings of the 3rd World Congress of the International Society of Physical and Rehabilitation Medicine (ISPRM) 2005, Sao Paulo, Brazil 2005, 270. Abstract 909-1 Jang SJ, Park SW, Kim ES, Wee HM, Kim YH: Electromechanical gait trainer for restoring gait in hemiparetic stroke patients. Proceedings of the 3rd World Congress of the International Society of Physical and Rehabilitation Medicine (ISPRM) 2005, Sao Paulo, Brazil 2005, 270. Abstract 909-1
25.
go back to reference Li LSW, Tong RKY, Ng MFW, So EFM: Gait training by mechanical gait trainer and functional electrical stimulation for subacute stroke patients: a randomised controlled study. Proceedings of the 3rd World Congress of the International Society of Physical and Rehabilitation Medicine (ISPRM) 2005, Sao Paulo, Brazil 2005, 78. Abstract 347-1 Li LSW, Tong RKY, Ng MFW, So EFM: Gait training by mechanical gait trainer and functional electrical stimulation for subacute stroke patients: a randomised controlled study. Proceedings of the 3rd World Congress of the International Society of Physical and Rehabilitation Medicine (ISPRM) 2005, Sao Paulo, Brazil 2005, 78. Abstract 347-1
26.
go back to reference Peurala SH, Tarkka IM, Pitkänen K, Sivenius J: The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil 2005, 85: 1557-1564.CrossRef Peurala SH, Tarkka IM, Pitkänen K, Sivenius J: The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil 2005, 85: 1557-1564.CrossRef
27.
go back to reference Lordahl DS, Archer EJ: Transfer effects on a rotary pursuit task as a function of first task difficulty. Journal of Experiomental Psychology 1958, 56: 421-426.CrossRef Lordahl DS, Archer EJ: Transfer effects on a rotary pursuit task as a function of first task difficulty. Journal of Experiomental Psychology 1958, 56: 421-426.CrossRef
28.
go back to reference Cormier SM, Hagman JD: Transfer of Learning: Contemporary research applications. Academic Press, New York; 1987. Cormier SM, Hagman JD: Transfer of Learning: Contemporary research applications. Academic Press, New York; 1987.
29.
go back to reference Schmidt RA, Lee TD: Motor Control and Learning. 3rd edition. Human Kinetics Publishers, Inc; 1998. Schmidt RA, Lee TD: Motor Control and Learning. 3rd edition. Human Kinetics Publishers, Inc; 1998.
30.
go back to reference Roston GP, Peurach T: A whole body kinesthetic display device for virtual reality applications. Proc of IEEE Intl Conf on Robotics & Automation (ICRA), Albuqerque, NM, USA 1997, 3006-3011.CrossRef Roston GP, Peurach T: A whole body kinesthetic display device for virtual reality applications. Proc of IEEE Intl Conf on Robotics & Automation (ICRA), Albuqerque, NM, USA 1997, 3006-3011.CrossRef
31.
go back to reference Hollerbach JM: Locomotion Interfaces. In Handbook of Virtual Environments: Design, Implementation, and Applications. Edited by: Stanney KM. Lawrence Erlbaum Associates, Inc; 2002:239-254. Hollerbach JM: Locomotion Interfaces. In Handbook of Virtual Environments: Design, Implementation, and Applications. Edited by: Stanney KM. Lawrence Erlbaum Associates, Inc; 2002:239-254.
32.
go back to reference Iwata H, Yano H, Nakaizuni F: GaitMaster: A Versatile Locomotion Interface for Uneven Virtual Terrain. Proc of IEEE Virtual Reality Conference, Yokohama, Japan 2001, 131-137. Iwata H, Yano H, Nakaizuni F: GaitMaster: A Versatile Locomotion Interface for Uneven Virtual Terrain. Proc of IEEE Virtual Reality Conference, Yokohama, Japan 2001, 131-137.
33.
go back to reference Shiozawa N, Arima S, Makikawa M: Virtual Walkway System and Prediction of Gait Mode Transition for the Control of the Gait Simulator. Proceedings of the IEEE Engineering in Medicine and Biology Conference (EMBC), San Francisco, CA, USA 2004. Shiozawa N, Arima S, Makikawa M: Virtual Walkway System and Prediction of Gait Mode Transition for the Control of the Gait Simulator. Proceedings of the IEEE Engineering in Medicine and Biology Conference (EMBC), San Francisco, CA, USA 2004.
34.
go back to reference Boian RF, Bouzit M, Burdea GC, Deutsch JE: Dual Stewart Platform Mobility Simulator. Proceedings of the IEEE Engineering in Medicine and Biology Conference (EMBC), San Francisco, CA, USA 2004, 4848-4851. Boian RF, Bouzit M, Burdea GC, Deutsch JE: Dual Stewart Platform Mobility Simulator. Proceedings of the IEEE Engineering in Medicine and Biology Conference (EMBC), San Francisco, CA, USA 2004, 4848-4851.
35.
go back to reference Behrman AL, Harkema SJ: Locomotor training after human spinal cord injury: A series of case studies. Physical Therapy 2000,80(7):688-700.PubMed Behrman AL, Harkema SJ: Locomotor training after human spinal cord injury: A series of case studies. Physical Therapy 2000,80(7):688-700.PubMed
36.
go back to reference Schmidt H, Hesse S, Bernhardt R, Krüger J: HapticWalker – A novel Haptic Foot Device. ACM Transactions on Applied Perception 2005,2(2):166-180.CrossRef Schmidt H, Hesse S, Bernhardt R, Krüger J: HapticWalker – A novel Haptic Foot Device. ACM Transactions on Applied Perception 2005,2(2):166-180.CrossRef
Metadata
Title
Gait rehabilitation machines based on programmable footplates
Authors
Henning Schmidt
Cordula Werner
Rolf Bernhardt
Stefan Hesse
Jörg Krüger
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-2

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue