Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2006

Open Access 01-12-2006 | Research

Human treadmill walking needs attention

Authors: Jean Philippe Regnaux, Johanna Robertson, Djamel Ben Smail, Olivier Daniel, Bernard Bussel

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2006

Login to get access

Abstract

Background

The aim of the study was to assess the attentional requirements of steady state treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a secondary (cognitive) RT task provides a measure of the attentional resources required to maintain performance of the primary (locomotor) task. Varying the level of difficulty of the reaction time (RT) task is used to verify the priority of allocation of attentional resources.

Methods

11 healthy adult subjects were required to walk while simultaneously performing a RT task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each subject was tested under five different experimental conditions: simple RT task alone and while walking, recognition RT task alone and while walking, walking alone. A foot switch system composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to determine the gait cycle duration.

Results

Gait cycle duration was unchanged (p > 0.05) by the addition of the RT task. Regardless of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting conditions (p < 0.01) indicating that an increased amount of resources are required for the maintainance of walking performance on a treadmill at a steady state. No interaction (p > 0.05) was found between the attentional demand of the walking task and the decrement of performance found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects prioritized the control of walking at the expense of cognitive performance.

Conclusion

We conclude that treadmill walking in young adults is not a purely automatic task. The methodology and outcome measures used in this study provide an assessment of the attentional resources required by walking on the treadmill at a steady state.
Appendix
Available only for authorised users
Literature
1.
go back to reference Van de Crommert HW, Mulder T, Duysens J: Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 1998, 7: 251-263. 10.1016/S0966-6362(98)00010-1CrossRefPubMed Van de Crommert HW, Mulder T, Duysens J: Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 1998, 7: 251-263. 10.1016/S0966-6362(98)00010-1CrossRefPubMed
2.
go back to reference Barbeau H: Locomotor training in neurorehabilitation: emerging rehabilitation concepts. Neurorehabil Neural Repair 2003, 17: 3-11. Review 10.1177/0888439002250442CrossRefPubMed Barbeau H: Locomotor training in neurorehabilitation: emerging rehabilitation concepts. Neurorehabil Neural Repair 2003, 17: 3-11. Review 10.1177/0888439002250442CrossRefPubMed
3.
go back to reference Thomas SL, Gorassini MA: Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 2005, 94: 2844-55. 10.1152/jn.00532.2005CrossRefPubMed Thomas SL, Gorassini MA: Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 2005, 94: 2844-55. 10.1152/jn.00532.2005CrossRefPubMed
4.
go back to reference MacKay-Lyons M: Central pattern generation of locomotion: a review of the evidence. Physical Therapy 2002, 82: 69-83. ReviewPubMed MacKay-Lyons M: Central pattern generation of locomotion: a review of the evidence. Physical Therapy 2002, 82: 69-83. ReviewPubMed
5.
go back to reference Zehr EP, Duysens J: Regulation of arm and leg movement during human locomotion. Neuroscientist 2004, 10: 347-61. Review 10.1177/1073858404264680CrossRefPubMed Zehr EP, Duysens J: Regulation of arm and leg movement during human locomotion. Neuroscientist 2004, 10: 347-61. Review 10.1177/1073858404264680CrossRefPubMed
6.
go back to reference Barbeau H, Wainberg M, Finch L: Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput 1987, 25: 341-4. 10.1007/BF02447435CrossRefPubMed Barbeau H, Wainberg M, Finch L: Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput 1987, 25: 341-4. 10.1007/BF02447435CrossRefPubMed
7.
go back to reference Duysens J, Van de Crommert HW: Neural control of locomotion; The central pattern generator from cats to humans. Gait Posture 1998, 7: 131-141. 10.1016/S0966-6362(97)00042-8CrossRefPubMed Duysens J, Van de Crommert HW: Neural control of locomotion; The central pattern generator from cats to humans. Gait Posture 1998, 7: 131-141. 10.1016/S0966-6362(97)00042-8CrossRefPubMed
8.
go back to reference Dietz V: Spinal cord pattern generators for locomotion. Clin Neurophysiol 2003, 114: 1379-89. Review 10.1016/S1388-2457(03)00120-2CrossRefPubMed Dietz V: Spinal cord pattern generators for locomotion. Clin Neurophysiol 2003, 114: 1379-89. Review 10.1016/S1388-2457(03)00120-2CrossRefPubMed
9.
go back to reference Dobkin BH, Firestine A, West M, Saremi K, Woods R: Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 2004, 23: 370-81. 10.1016/j.neuroimage.2004.06.008PubMedCentralCrossRefPubMed Dobkin BH, Firestine A, West M, Saremi K, Woods R: Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 2004, 23: 370-81. 10.1016/j.neuroimage.2004.06.008PubMedCentralCrossRefPubMed
10.
go back to reference Nielsen JB: How we walk: central control of muscle activity during human walking. Neuroscientist 2003, 9: 195-204. Review 10.1177/1073858403009003012CrossRefPubMed Nielsen JB: How we walk: central control of muscle activity during human walking. Neuroscientist 2003, 9: 195-204. Review 10.1177/1073858403009003012CrossRefPubMed
11.
go back to reference Canning CG, Ada L, Paul SS: Is automaticity of walking regained after stroke? Disabil Rehabil 2006, 28: 97-102. 10.1080/09638280500167712CrossRefPubMed Canning CG, Ada L, Paul SS: Is automaticity of walking regained after stroke? Disabil Rehabil 2006, 28: 97-102. 10.1080/09638280500167712CrossRefPubMed
12.
go back to reference Abernethy B, Hanna A, Plooy A: The attentional demands of preferred and non-preferred gait patterns. Gait Posture 2002, 15: 256-65. 10.1016/S0966-6362(01)00195-3CrossRefPubMed Abernethy B, Hanna A, Plooy A: The attentional demands of preferred and non-preferred gait patterns. Gait Posture 2002, 15: 256-65. 10.1016/S0966-6362(01)00195-3CrossRefPubMed
13.
go back to reference Mulder T, Zijlstra W, Geurts A: Assessment of motor recovery and decline. Gait Posture 2002, 16: 198-210. Review 10.1016/S0966-6362(01)00157-6CrossRefPubMed Mulder T, Zijlstra W, Geurts A: Assessment of motor recovery and decline. Gait Posture 2002, 16: 198-210. Review 10.1016/S0966-6362(01)00157-6CrossRefPubMed
14.
go back to reference Monno A, Temprado JJ, Zanone PG, Laurent M: The interplay of attention and bimanual coordination dynamics. Acta Psychol 2002, 110: 187-211. Review 10.1016/S0001-6918(02)00033-1CrossRef Monno A, Temprado JJ, Zanone PG, Laurent M: The interplay of attention and bimanual coordination dynamics. Acta Psychol 2002, 110: 187-211. Review 10.1016/S0001-6918(02)00033-1CrossRef
15.
go back to reference Vuillerme N, Nougier V: Attentional demand for regulating postural sway: the effect of expertise in gymnastics. Brain Res Bull 2004, 63: 161-5. 10.1016/j.brainresbull.2004.02.006CrossRefPubMed Vuillerme N, Nougier V: Attentional demand for regulating postural sway: the effect of expertise in gymnastics. Brain Res Bull 2004, 63: 161-5. 10.1016/j.brainresbull.2004.02.006CrossRefPubMed
16.
go back to reference Vuillerme N, Isableu B, Nougier V: Attentional demands associated with the use of a light fingertip touch for postural control during quiet standing. Exp Brain Res 2006, 169: 232-6. 10.1007/s00221-005-0142-7CrossRefPubMed Vuillerme N, Isableu B, Nougier V: Attentional demands associated with the use of a light fingertip touch for postural control during quiet standing. Exp Brain Res 2006, 169: 232-6. 10.1007/s00221-005-0142-7CrossRefPubMed
17.
go back to reference Woollacott M, Shumway-Cook A: Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002, 16: 1-14. Review 10.1016/S0966-6362(01)00156-4CrossRefPubMed Woollacott M, Shumway-Cook A: Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002, 16: 1-14. Review 10.1016/S0966-6362(01)00156-4CrossRefPubMed
18.
go back to reference Li KZ, Lindenberger U: Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev 2002, 26: 777-83. Review 10.1016/S0149-7634(02)00073-8CrossRefPubMed Li KZ, Lindenberger U: Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev 2002, 26: 777-83. Review 10.1016/S0149-7634(02)00073-8CrossRefPubMed
19.
go back to reference Gage WH, Sleik RJ, Polych MA, McKenzie NC, Brown LA: The allocation of attention during locomotion is altered by anxiety. Exp Brain Res 2003, 150: 385-94.PubMed Gage WH, Sleik RJ, Polych MA, McKenzie NC, Brown LA: The allocation of attention during locomotion is altered by anxiety. Exp Brain Res 2003, 150: 385-94.PubMed
20.
go back to reference Li KZ, Lindenberger U, Freund AM, Baltes PB: Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci 2001, 12: 230-7. 10.1111/1467-9280.00341CrossRefPubMed Li KZ, Lindenberger U, Freund AM, Baltes PB: Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci 2001, 12: 230-7. 10.1111/1467-9280.00341CrossRefPubMed
21.
go back to reference Tsang PS, Velazquez VL, Vidulich MA: Viability of resource theories in explaining time-sharing performance. Acta Psychol 1996, 91: 175-206. 10.1016/0001-6918(94)00055-7CrossRef Tsang PS, Velazquez VL, Vidulich MA: Viability of resource theories in explaining time-sharing performance. Acta Psychol 1996, 91: 175-206. 10.1016/0001-6918(94)00055-7CrossRef
22.
go back to reference Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M: The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci 1997, 52: M232-40.CrossRefPubMed Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M: The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci 1997, 52: M232-40.CrossRefPubMed
23.
go back to reference Kurosawa K: Effects of various walking speeds on probe reaction time during treadmill walking. Percept Mot Skills 1994, 78: 768-70.CrossRefPubMed Kurosawa K: Effects of various walking speeds on probe reaction time during treadmill walking. Percept Mot Skills 1994, 78: 768-70.CrossRefPubMed
24.
go back to reference Lajoie Y, Teasdale N, Bard C, Fleury M: Attentional demands for static and dynamic equilibrium. Exp Brain Res 1993, 97: 139-44. 10.1007/BF00228824CrossRefPubMed Lajoie Y, Teasdale N, Bard C, Fleury M: Attentional demands for static and dynamic equilibrium. Exp Brain Res 1993, 97: 139-44. 10.1007/BF00228824CrossRefPubMed
25.
go back to reference Sparrow WA, Bradshaw EJ, Lamoureux E, Tirosh O: Ageing effects on the attention demands of walking. Hum Mov Sci 2002, 21: 961-72. 10.1016/S0167-9457(02)00154-9CrossRefPubMed Sparrow WA, Bradshaw EJ, Lamoureux E, Tirosh O: Ageing effects on the attention demands of walking. Hum Mov Sci 2002, 21: 961-72. 10.1016/S0167-9457(02)00154-9CrossRefPubMed
26.
go back to reference Faulkner KA, Redfern MS, Rosano C, Landsittel DP, Studenski SA, Cauley JA, Zmuda JM, Simonsick EM, Kritchevsky SB, Newman AB: Reciprocal influence of concurrent walking and cognitive testing on performance in older adults. Gait Posture 2005, in press. Faulkner KA, Redfern MS, Rosano C, Landsittel DP, Studenski SA, Cauley JA, Zmuda JM, Simonsick EM, Kritchevsky SB, Newman AB: Reciprocal influence of concurrent walking and cognitive testing on performance in older adults. Gait Posture 2005, in press.
27.
go back to reference Yardley L, Gardner M, Leadbetter A, Lavie N: Effect of articulatory and mental tasks on postural control. Neuroreport 1999, 10: 215-9.CrossRefPubMed Yardley L, Gardner M, Leadbetter A, Lavie N: Effect of articulatory and mental tasks on postural control. Neuroreport 1999, 10: 215-9.CrossRefPubMed
28.
go back to reference Dault MC, Geurts AC, Mulder TW, Duysens J: Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations. Gait Posture 2001, 14: 248-55. 10.1016/S0966-6362(01)00130-8CrossRefPubMed Dault MC, Geurts AC, Mulder TW, Duysens J: Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations. Gait Posture 2001, 14: 248-55. 10.1016/S0966-6362(01)00130-8CrossRefPubMed
29.
go back to reference Huys R, Daffertshofer A, Beek P, Sanderson D, Siegmund G: Locomotion-respiration coupling: an account of the underlying dynamics. J Appl Physiol 2004, 96: 2341-2. 10.1152/japplphysiol.01341.2003CrossRefPubMed Huys R, Daffertshofer A, Beek P, Sanderson D, Siegmund G: Locomotion-respiration coupling: an account of the underlying dynamics. J Appl Physiol 2004, 96: 2341-2. 10.1152/japplphysiol.01341.2003CrossRefPubMed
30.
go back to reference Abernethy B: Dual-task methodology and motor skills research: some applications and methodological constraints. J Hum Mov Studies 1988, 14: 101-132. Abernethy B: Dual-task methodology and motor skills research: some applications and methodological constraints. J Hum Mov Studies 1988, 14: 101-132.
31.
go back to reference Montgomery DC: Design and analysis experiments. 5th edition. New York: John Wiley and Sons; 2001. Montgomery DC: Design and analysis experiments. 5th edition. New York: John Wiley and Sons; 2001.
32.
go back to reference Pashler H: Dual-task interference in simple tasks: data and theory. Psychol Bull 1994, 116: 220-44. 10.1037/0033-2909.116.2.220CrossRefPubMed Pashler H: Dual-task interference in simple tasks: data and theory. Psychol Bull 1994, 116: 220-44. 10.1037/0033-2909.116.2.220CrossRefPubMed
33.
go back to reference Beauchet O, Dubost V, Herrmann FR, Kressig RW: Stride-to-stride variability while backward counting among healthy young adults. J Neuroengineering Rehabil 2005, 11: 2-26. Beauchet O, Dubost V, Herrmann FR, Kressig RW: Stride-to-stride variability while backward counting among healthy young adults. J Neuroengineering Rehabil 2005, 11: 2-26.
34.
go back to reference Brauer SG, Broome A, Stone C, Clewett S, Herzig P: Simplest tasks have greatest dual task interference with balance in brain injured adults. Hum Mov Sci 2004, 23: 489-502. 10.1016/j.humov.2004.08.020CrossRefPubMed Brauer SG, Broome A, Stone C, Clewett S, Herzig P: Simplest tasks have greatest dual task interference with balance in brain injured adults. Hum Mov Sci 2004, 23: 489-502. 10.1016/j.humov.2004.08.020CrossRefPubMed
35.
go back to reference Yardley L, Gardner M, Bronstein A, Davies R, Buckwell D, Luxon L: Interference between postural control and mental task performance in patients with vestibular disorder and healthy controls. J Neurol Neurosurg Psychiatry 2001, 71: 48-52. 10.1136/jnnp.71.1.48PubMedCentralCrossRefPubMed Yardley L, Gardner M, Bronstein A, Davies R, Buckwell D, Luxon L: Interference between postural control and mental task performance in patients with vestibular disorder and healthy controls. J Neurol Neurosurg Psychiatry 2001, 71: 48-52. 10.1136/jnnp.71.1.48PubMedCentralCrossRefPubMed
36.
go back to reference Regnaux JP, David D, Daniel O, Smail DB, Combeaud M, Bussel B: Evidence for cognitive processes involved in the control of steady state of walking in healthy subjects and after cerebral damage. Neurorehabil Neural Repair 2005, 19: 125-32. 10.1177/1545968305275612CrossRefPubMed Regnaux JP, David D, Daniel O, Smail DB, Combeaud M, Bussel B: Evidence for cognitive processes involved in the control of steady state of walking in healthy subjects and after cerebral damage. Neurorehabil Neural Repair 2005, 19: 125-32. 10.1177/1545968305275612CrossRefPubMed
37.
go back to reference Collins DF, Cameron T, Gillard DM, Prochazka A: Muscular sense is attenuated when humans move. The Journal of Physiology 1998, 508: 635-643. 10.1111/j.1469-7793.1998.00635.xPubMedCentralCrossRefPubMed Collins DF, Cameron T, Gillard DM, Prochazka A: Muscular sense is attenuated when humans move. The Journal of Physiology 1998, 508: 635-643. 10.1111/j.1469-7793.1998.00635.xPubMedCentralCrossRefPubMed
38.
go back to reference Milne RJ, Aniss AM, Kay NE, Gandevia SC: Reduction in perceived intensity of cutaneous stimuli during movement: a quantitative study. Exp Brain Res 1988, 70: 569-576. 10.1007/BF00247604CrossRefPubMed Milne RJ, Aniss AM, Kay NE, Gandevia SC: Reduction in perceived intensity of cutaneous stimuli during movement: a quantitative study. Exp Brain Res 1988, 70: 569-576. 10.1007/BF00247604CrossRefPubMed
39.
go back to reference Prochazka A: Sensorimotor gain control: A basic strategy of motor control systems? Progress in Neurobiology 1989, 33: 281-307. 10.1016/0301-0082(89)90004-XCrossRefPubMed Prochazka A: Sensorimotor gain control: A basic strategy of motor control systems? Progress in Neurobiology 1989, 33: 281-307. 10.1016/0301-0082(89)90004-XCrossRefPubMed
40.
go back to reference Pins D, Bonnet C: On the relation between stimulus intensity and processing time: Pieron's law and choice reaction time. Perception & psychophysics 1996, 85: 390-400.CrossRef Pins D, Bonnet C: On the relation between stimulus intensity and processing time: Pieron's law and choice reaction time. Perception & psychophysics 1996, 85: 390-400.CrossRef
41.
go back to reference Pins D, Bonnet C: The Pieron function in the threshold region. Perception & psychophysics 2000, 62: 127-36.CrossRef Pins D, Bonnet C: The Pieron function in the threshold region. Perception & psychophysics 2000, 62: 127-36.CrossRef
42.
go back to reference Marsh AP, Geel SE: The effect of age on the attentional demands of postural control. Gait Posture 2000, 12: 105-13. 10.1016/S0966-6362(00)00074-6CrossRefPubMed Marsh AP, Geel SE: The effect of age on the attentional demands of postural control. Gait Posture 2000, 12: 105-13. 10.1016/S0966-6362(00)00074-6CrossRefPubMed
43.
go back to reference Kemper S, Herman RE, Lian CH: The costs of doing two things at once for young and older adults: talking while walking, finger tapping, and ignoring speech or noise. Psychol Aging 2003, 18: 181-92. 10.1037/0882-7974.18.2.181CrossRefPubMed Kemper S, Herman RE, Lian CH: The costs of doing two things at once for young and older adults: talking while walking, finger tapping, and ignoring speech or noise. Psychol Aging 2003, 18: 181-92. 10.1037/0882-7974.18.2.181CrossRefPubMed
44.
go back to reference Grabiner MD, Troy KL: Attention demanding tasks during treadmill walking reduce step width variability in young adults. J Neuroengineering Rehabil 2005, 8: 2-25. Grabiner MD, Troy KL: Attention demanding tasks during treadmill walking reduce step width variability in young adults. J Neuroengineering Rehabil 2005, 8: 2-25.
Metadata
Title
Human treadmill walking needs attention
Authors
Jean Philippe Regnaux
Johanna Robertson
Djamel Ben Smail
Olivier Daniel
Bernard Bussel
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2006
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-3-19

Other articles of this Issue 1/2006

Journal of NeuroEngineering and Rehabilitation 1/2006 Go to the issue