Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Review

Non-invasive control interfaces for intention detection in active movement-assistive devices

Authors: Joan Lobo-Prat, Peter N Kooren, Arno HA Stienen, Just L Herder, Bart FJM Koopman, Peter H Veltink

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Active movement-assistive devices aim to increase the quality of life for patients with neuromusculoskeletal disorders. This technology requires interaction between the user and the device through a control interface that detects the user’s movement intention. Researchers have explored a wide variety of invasive and non-invasive control interfaces. To summarize the wide spectrum of strategies, this paper presents a comprehensive review focused on non-invasive control interfaces used to operate active movement-assistive devices. A novel systematic classification method is proposed to categorize the control interfaces based on: (I) the source of the physiological signal, (II) the physiological phenomena responsible for generating the signal, and (III) the sensors used to measure the physiological signal. The proposed classification method can successfully categorize all the existing control interfaces providing a comprehensive overview of the state of the art. Each sensing modality is briefly described in the body of the paper following the same structure used in the classification method. Furthermore, we discuss several design considerations, challenges, and future directions of non-invasive control interfaces for active movement-assistive devices.
Appendix
Available only for authorised users
Literature
1.
go back to reference Veltink PH: Sensory feedback in artificial control of human mobility. Technol Health Care 1999, 7: 383-391.PubMed Veltink PH: Sensory feedback in artificial control of human mobility. Technol Health Care 1999, 7: 383-391.PubMed
2.
go back to reference Veltink PH, Koopman HFJM, van der Helm FCT, Nene AV: Biomechatronics – assisting the impaired motor system. Arch Physiol Biochem 2001, 109: 1-9. 10.1076/apab.109.1.1.4282PubMedCrossRef Veltink PH, Koopman HFJM, van der Helm FCT, Nene AV: Biomechatronics – assisting the impaired motor system. Arch Physiol Biochem 2001, 109: 1-9. 10.1076/apab.109.1.1.4282PubMedCrossRef
3.
go back to reference Borutzky W: Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models. Switzerland: Springer International publisher; 2010.CrossRef Borutzky W: Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models. Switzerland: Springer International publisher; 2010.CrossRef
4.
go back to reference Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-Art. IEEE Trans Robot 2008, 24: 144-158.CrossRef Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-Art. IEEE Trans Robot 2008, 24: 144-158.CrossRef
5.
go back to reference Pons JL: Wearable Robots: Biomechatronic Exoskeletons. 1st edition. Wiley Blackwell; 2008.CrossRef Pons JL: Wearable Robots: Biomechatronic Exoskeletons. 1st edition. Wiley Blackwell; 2008.CrossRef
7.
go back to reference Zecca M, Micera S, Carrozza MC, Dario P: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 2002, 30: 459-485. 10.1615/CritRevBiomedEng.v30.i456.80PubMedCrossRef Zecca M, Micera S, Carrozza MC, Dario P: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 2002, 30: 459-485. 10.1615/CritRevBiomedEng.v30.i456.80PubMedCrossRef
8.
go back to reference McFarland DJ, Wolpaw JR: Brain-computer interface operation of robotic and prosthetic devices. Computer 2008, 41: 52-56.CrossRef McFarland DJ, Wolpaw JR: Brain-computer interface operation of robotic and prosthetic devices. Computer 2008, 41: 52-56.CrossRef
9.
go back to reference Kübler A, Birbaumer N: Brain–computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 2008, 119: 2658-2666. 10.1016/j.clinph.2008.06.019PubMedPubMedCentralCrossRef Kübler A, Birbaumer N: Brain–computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 2008, 119: 2658-2666. 10.1016/j.clinph.2008.06.019PubMedPubMedCentralCrossRef
10.
go back to reference Muller-Putz GR, Pfurtscheller G: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng 2008, 55: 361-364.PubMedCrossRef Muller-Putz GR, Pfurtscheller G: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng 2008, 55: 361-364.PubMedCrossRef
11.
go back to reference Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán J del R: A brain-actuated wheelchair: asynchronous and non-invasive Brain–computer interfaces for continuous control of robots. Clin Neurophysiol 2008, 119: 2159-2169. 10.1016/j.clinph.2008.06.001PubMedCrossRef Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán J del R: A brain-actuated wheelchair: asynchronous and non-invasive Brain–computer interfaces for continuous control of robots. Clin Neurophysiol 2008, 119: 2159-2169. 10.1016/j.clinph.2008.06.001PubMedCrossRef
12.
go back to reference Gancet J, Ilzkovitz M, Motard E, Nevatia Y, Letier P, de Weerdt D, Cheron G, Hoellinger T, Seetharaman K, Petieau M, Ivanenko Y, Molinari M, Pisotta I, Tamburella F, Labini FS, D’ Avella A, van der Kooij H, Wang L, van der Helm F, Wang S, Zanow F, Hauffe R, Thorsteinsson F: MINDWALKER: going one step further with assistive lower limbs exoskeleton for SCI condition subjects. In 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob): 24-27 June 2012. Rome; 2012:1794-1800.CrossRef Gancet J, Ilzkovitz M, Motard E, Nevatia Y, Letier P, de Weerdt D, Cheron G, Hoellinger T, Seetharaman K, Petieau M, Ivanenko Y, Molinari M, Pisotta I, Tamburella F, Labini FS, D’ Avella A, van der Kooij H, Wang L, van der Helm F, Wang S, Zanow F, Hauffe R, Thorsteinsson F: MINDWALKER: going one step further with assistive lower limbs exoskeleton for SCI condition subjects. In 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob): 24-27 June 2012. Rome; 2012:1794-1800.CrossRef
13.
go back to reference Looned R, Webb J, Xiao ZG, Menon C: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 2014, 11: 51. 10.1186/1743-0003-11-51PubMedPubMedCentralCrossRef Looned R, Webb J, Xiao ZG, Menon C: Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J Neuroeng Rehabil 2014, 11: 51. 10.1186/1743-0003-11-51PubMedPubMedCentralCrossRef
14.
go back to reference Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Creatura M, Molina A, Al-Khodairy A, Carlson T, Millán JDR: Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif Intell Med 2013, 59: 121-132. 10.1016/j.artmed.2013.08.004PubMedCrossRef Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Creatura M, Molina A, Al-Khodairy A, Carlson T, Millán JDR: Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif Intell Med 2013, 59: 121-132. 10.1016/j.artmed.2013.08.004PubMedCrossRef
15.
go back to reference Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A: An MEG-based brain-computer interface (BCI). NeuroImage 2007, 36: 581-593. 10.1016/j.neuroimage.2007.03.019PubMedPubMedCentralCrossRef Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A: An MEG-based brain-computer interface (BCI). NeuroImage 2007, 36: 581-593. 10.1016/j.neuroimage.2007.03.019PubMedPubMedCentralCrossRef
16.
go back to reference Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 2008, 39: 910-917. Està bé 10.1161/STROKEAHA.107.505313PubMedCrossRef Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 2008, 39: 910-917. Està bé 10.1161/STROKEAHA.107.505313PubMedCrossRef
17.
go back to reference Sorger B, Reithler J, Dahmen B, Goebel R: A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol 2012, 22: 1333-1338. 10.1016/j.cub.2012.05.022PubMedCrossRef Sorger B, Reithler J, Dahmen B, Goebel R: A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol 2012, 22: 1333-1338. 10.1016/j.cub.2012.05.022PubMedCrossRef
18.
go back to reference Lee J-H, Ryu J, Jolesz FA, Cho Z-H, Yoo S-S: Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett 2009, 450: 1-6. 10.1016/j.neulet.2008.11.024PubMedPubMedCentralCrossRef Lee J-H, Ryu J, Jolesz FA, Cho Z-H, Yoo S-S: Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett 2009, 450: 1-6. 10.1016/j.neulet.2008.11.024PubMedPubMedCentralCrossRef
19.
go back to reference Sagara K, Kido K: Evaluation of a 2-channel NIRS-based optical brain switch for motor disabilities’ communication tools. IEICE Trans Inf Syst 2012, E95-D: 829-834. 10.1587/transinf.E95.D.829CrossRef Sagara K, Kido K: Evaluation of a 2-channel NIRS-based optical brain switch for motor disabilities’ communication tools. IEICE Trans Inf Syst 2012, E95-D: 829-834. 10.1587/transinf.E95.D.829CrossRef
20.
go back to reference Misawa T, Goto K, Takano S, Hirobayashi S: A development of NIRS-based brain-computer interface for robot control. IEEJ Transact Sensors Micromachines 2012, 132: 355-361. 10.1541/ieejsmas.132.355CrossRef Misawa T, Goto K, Takano S, Hirobayashi S: A development of NIRS-based brain-computer interface for robot control. IEEJ Transact Sensors Micromachines 2012, 132: 355-361. 10.1541/ieejsmas.132.355CrossRef
21.
go back to reference Hargrove LJ, Simon AM, Lipschutz R, Finucane SB, Kuiken TA: Non-weight-bearing neural control of a powered transfemoral prosthesis. J Neuroeng Rehabil 2013, 10: 62. 10.1186/1743-0003-10-62PubMedPubMedCentralCrossRef Hargrove LJ, Simon AM, Lipschutz R, Finucane SB, Kuiken TA: Non-weight-bearing neural control of a powered transfemoral prosthesis. J Neuroeng Rehabil 2013, 10: 62. 10.1186/1743-0003-10-62PubMedPubMedCentralCrossRef
22.
go back to reference Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC: Intention-based EMG control for powered exoskeletons. IEEE Trans Biomed Eng 2012, 59: 2180-2190.PubMedCrossRef Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC: Intention-based EMG control for powered exoskeletons. IEEE Trans Biomed Eng 2012, 59: 2180-2190.PubMedCrossRef
23.
go back to reference Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D: Intuitive, online, simultaneous, and proportional myoelectric control over Two degrees-of-freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 501-510.PubMedCrossRef Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D: Intuitive, online, simultaneous, and proportional myoelectric control over Two degrees-of-freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 501-510.PubMedCrossRef
24.
go back to reference Artemiadis PK, Kyriakopoulos KJ: EMG-based control of a robot Arm using Low-dimensional embeddings. IEEE Trans Robot 2010, 26: 393-398.CrossRef Artemiadis PK, Kyriakopoulos KJ: EMG-based control of a robot Arm using Low-dimensional embeddings. IEEE Trans Robot 2010, 26: 393-398.CrossRef
25.
go back to reference Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, Marasco PD, Zhou P, Dumanian GA: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 2007, 369: 371-380. 10.1016/S0140-6736(07)60193-7PubMedCrossRef Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, Marasco PD, Zhou P, Dumanian GA: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 2007, 369: 371-380. 10.1016/S0140-6736(07)60193-7PubMedCrossRef
26.
go back to reference Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart K: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301: 619-628. 10.1001/jama.2009.116PubMedPubMedCentralCrossRef Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart K: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301: 619-628. 10.1001/jama.2009.116PubMedPubMedCentralCrossRef
27.
go back to reference Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB, Smith DG, Kuiken TA: Robotic Leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med 2013, 369: 1237-1242. 10.1056/NEJMoa1300126PubMedCrossRef Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB, Smith DG, Kuiken TA: Robotic Leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med 2013, 369: 1237-1242. 10.1056/NEJMoa1300126PubMedCrossRef
28.
go back to reference Barry DT, Leonard JA Jr, Gitter AJ, Ball RD: Acoustic myography as a control signal for an externally powered prosthesis. Arch Phys Med Rehabil 1986, 67: 267-269.PubMed Barry DT, Leonard JA Jr, Gitter AJ, Ball RD: Acoustic myography as a control signal for an externally powered prosthesis. Arch Phys Med Rehabil 1986, 67: 267-269.PubMed
29.
go back to reference Posatskiy AO, Chau T: The effects of motion artifact on mechanomyography: a comparative study of microphones and accelerometers. J Electromyogr Kinesiol 2012, 22: 320-324. 10.1016/j.jelekin.2011.09.004PubMedCrossRef Posatskiy AO, Chau T: The effects of motion artifact on mechanomyography: a comparative study of microphones and accelerometers. J Electromyogr Kinesiol 2012, 22: 320-324. 10.1016/j.jelekin.2011.09.004PubMedCrossRef
30.
go back to reference Silva J, Heim W, Chau T: A self-contained, mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehabil 2005, 86: 2066-2070. 10.1016/j.apmr.2005.03.034PubMedCrossRef Silva J, Heim W, Chau T: A self-contained, mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehabil 2005, 86: 2066-2070. 10.1016/j.apmr.2005.03.034PubMedCrossRef
31.
go back to reference Silva J, Chau T: Coupled microphone-accelerometer sensor pair for dynamic noise reduction in MMG signal recording. Electron Lett 2003, 39: 1496-1498. 10.1049/el:20031003CrossRef Silva J, Chau T: Coupled microphone-accelerometer sensor pair for dynamic noise reduction in MMG signal recording. Electron Lett 2003, 39: 1496-1498. 10.1049/el:20031003CrossRef
32.
go back to reference Antonelli MG, Beomonte Zobel P, Giacomin J: Use of MMG signals for the control of powered orthotic devices: development of a rectus femoris measurement protocol. Assist Technol 2009, 21: 1-12. 10.1080/10400430902945678PubMedCrossRef Antonelli MG, Beomonte Zobel P, Giacomin J: Use of MMG signals for the control of powered orthotic devices: development of a rectus femoris measurement protocol. Assist Technol 2009, 21: 1-12. 10.1080/10400430902945678PubMedCrossRef
33.
go back to reference Kenney LP, Lisitsa I, Bowker P, Heath G, Howard D: Dimensional change in muscle as a control signal for powered upper limb prostheses: a pilot study. Med Eng Phys 1999, 21: 589-597. 10.1016/S1350-4533(99)00089-2PubMedCrossRef Kenney LP, Lisitsa I, Bowker P, Heath G, Howard D: Dimensional change in muscle as a control signal for powered upper limb prostheses: a pilot study. Med Eng Phys 1999, 21: 589-597. 10.1016/S1350-4533(99)00089-2PubMedCrossRef
34.
go back to reference Heath GH: Control of proportional grasping using a myokinemetric signal. Technol Disabil 2003, 15: 73-83. Heath GH: Control of proportional grasping using a myokinemetric signal. Technol Disabil 2003, 15: 73-83.
35.
go back to reference Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W: A biomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng 1999, 7: 121-129. 10.1109/86.769401PubMedCrossRef Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W: A biomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng 1999, 7: 121-129. 10.1109/86.769401PubMedCrossRef
36.
go back to reference Curcie DJ, Flint JA, Craelius W: Biomimetic finger control by filtering of distributed forelimb pressures. IEEE Trans Neural Syst Rehabil Eng 2001, 9: 69-75. 10.1109/7333.918278PubMedCrossRef Curcie DJ, Flint JA, Craelius W: Biomimetic finger control by filtering of distributed forelimb pressures. IEEE Trans Neural Syst Rehabil Eng 2001, 9: 69-75. 10.1109/7333.918278PubMedCrossRef
37.
go back to reference Kim WS, Lee HD, Lim DH, Han JS, Shin KS, Han CS: Development of a muscle circumference sensor to estimate torque of the human elbow joint. Sensors Actuators A Phys 2014, 208: 95-103.CrossRef Kim WS, Lee HD, Lim DH, Han JS, Shin KS, Han CS: Development of a muscle circumference sensor to estimate torque of the human elbow joint. Sensors Actuators A Phys 2014, 208: 95-103.CrossRef
38.
go back to reference Zheng YP, Chan MMF, Shi J, Chen X, Huang QH: Sonomyography: monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med Eng Phys 2006, 28: 405-415. 10.1016/j.medengphy.2005.07.012PubMedCrossRef Zheng YP, Chan MMF, Shi J, Chen X, Huang QH: Sonomyography: monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med Eng Phys 2006, 28: 405-415. 10.1016/j.medengphy.2005.07.012PubMedCrossRef
39.
go back to reference Chen X, Zheng Y-P, Guo J-Y, Shi J: Sonomyography (smg) control for powered prosthetic hand: a study with normal subjects. Ultrasound Med Biol 2010, 36: 1076-1088. 10.1016/j.ultrasmedbio.2010.04.015PubMedCrossRef Chen X, Zheng Y-P, Guo J-Y, Shi J: Sonomyography (smg) control for powered prosthetic hand: a study with normal subjects. Ultrasound Med Biol 2010, 36: 1076-1088. 10.1016/j.ultrasmedbio.2010.04.015PubMedCrossRef
40.
go back to reference González DS, Castellini C: A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees. Front Neurorobot 2013, 7: 17. González DS, Castellini C: A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees. Front Neurorobot 2013, 7: 17.
41.
go back to reference Kadefors R, Olsson T: Electrical impedance as a source of information in man–machine systems. Proc IEEE 1972, 60: 724-725.CrossRef Kadefors R, Olsson T: Electrical impedance as a source of information in man–machine systems. Proc IEEE 1972, 60: 724-725.CrossRef
42.
go back to reference Wininger M, Kim N-H, Craelius W: Pressure signature of forearm as predictor of grip force. J Rehabil Res Dev 2008, 45: 883-892. 10.1682/JRRD.2007.11.0187PubMedCrossRef Wininger M, Kim N-H, Craelius W: Pressure signature of forearm as predictor of grip force. J Rehabil Res Dev 2008, 45: 883-892. 10.1682/JRRD.2007.11.0187PubMedCrossRef
43.
go back to reference Moromugi S, Koujina Y, Ariki S, Okamoto A, Tanaka T, Feng MQ, Ishimatsu T: Muscle stiffness sensor to control an assistance device for the disabled. Artif Life Robotics 2004, 8: 42-45. 10.1007/s10015-004-0286-8CrossRef Moromugi S, Koujina Y, Ariki S, Okamoto A, Tanaka T, Feng MQ, Ishimatsu T: Muscle stiffness sensor to control an assistance device for the disabled. Artif Life Robotics 2004, 8: 42-45. 10.1007/s10015-004-0286-8CrossRef
44.
go back to reference Castellini C, Koiva R: Using a high spatial resolution tactile sensor for intention detection. In IEEE International Conference on Rehabilitation Robotics (ICORR): 24-26 June 2013. Seattle, WA; 2013:1-7.CrossRef Castellini C, Koiva R: Using a high spatial resolution tactile sensor for intention detection. In IEEE International Conference on Rehabilitation Robotics (ICORR): 24-26 June 2013. Seattle, WA; 2013:1-7.CrossRef
45.
go back to reference Han H, Han H, Kim J: Development of real-time muscle stiffness sensor based on resonance frequency for physical Human Robot Interactions. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Aug. 28 2012-Sept. 1 2012. San Diego, CA; 2012:2367-2370. Han H, Han H, Kim J: Development of real-time muscle stiffness sensor based on resonance frequency for physical Human Robot Interactions. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Aug. 28 2012-Sept. 1 2012. San Diego, CA; 2012:2367-2370.
46.
go back to reference Weir RF, Heckathorne CW, Childress DS: Cineplasty as a control input for externally powered prosthetic components. J Rehabil Res Dev 2001, 38: 357-363.PubMed Weir RF, Heckathorne CW, Childress DS: Cineplasty as a control input for externally powered prosthetic components. J Rehabil Res Dev 2001, 38: 357-363.PubMed
47.
go back to reference Bianchi T, Zambarbieri D, Beltrami G, Verni G: NIRS monitoring of muscle contraction to control a prosthetic device. Proc SPIE 3570, Biomed Sensors, Fibers, Opt Deliv Syst 1999, 3570: 157-163.CrossRef Bianchi T, Zambarbieri D, Beltrami G, Verni G: NIRS monitoring of muscle contraction to control a prosthetic device. Proc SPIE 3570, Biomed Sensors, Fibers, Opt Deliv Syst 1999, 3570: 157-163.CrossRef
48.
go back to reference Cen L, Han H, Kim J: Optical muscle activation sensors for estimating upper limb force level. In IEEE Instrumentation and Measurement Technology Conference (I2MTC): 13-16 May 2012. Graz; 2011:1-4. Cen L, Han H, Kim J: Optical muscle activation sensors for estimating upper limb force level. In IEEE Instrumentation and Measurement Technology Conference (I2MTC): 13-16 May 2012. Graz; 2011:1-4.
49.
go back to reference Chianura A, Giardini ME: An electrooptical muscle contraction sensor. Med Biol Eng Comput 2010, 48: 731-734. 10.1007/s11517-010-0626-xPubMedCrossRef Chianura A, Giardini ME: An electrooptical muscle contraction sensor. Med Biol Eng Comput 2010, 48: 731-734. 10.1007/s11517-010-0626-xPubMedCrossRef
50.
go back to reference Schneider DM, Ripplinger CM, Gilbertson K, Katti R, Schroeder MJ: Optically-Based Control of a Prosthetic Device. Florida: Key Biscayne; 2003. Schneider DM, Ripplinger CM, Gilbertson K, Katti R, Schroeder MJ: Optically-Based Control of a Prosthetic Device. Florida: Key Biscayne; 2003.
51.
go back to reference Thomas G, Simon D: Inertial thigh angle sensing for a semi-active knee prosthesis. In Proceedings of the IASTED International Symposia on Imaging and Signal Processing in Health Care and Technology, ISPHT 2012: May 14 – 16, 2012. Baltimore, USA; 2012:119-124. Thomas G, Simon D: Inertial thigh angle sensing for a semi-active knee prosthesis. In Proceedings of the IASTED International Symposia on Imaging and Signal Processing in Health Care and Technology, ISPHT 2012: May 14 – 16, 2012. Baltimore, USA; 2012:119-124.
52.
go back to reference Moreno JC, de Lima ER, Ruíz AF, Brunetti FJ, Pons JL: Design and implementation of an inertial measurement unit for control of artificial limbs: application on leg orthoses. Sensors Actuators B Chem 2006, 118: 333-337. 10.1016/j.snb.2006.04.039CrossRef Moreno JC, de Lima ER, Ruíz AF, Brunetti FJ, Pons JL: Design and implementation of an inertial measurement unit for control of artificial limbs: application on leg orthoses. Sensors Actuators B Chem 2006, 118: 333-337. 10.1016/j.snb.2006.04.039CrossRef
53.
go back to reference Jiang H, Wachs JP, Duerstock BS: Integrated vision-based robotic arm interface for operators with upper limb mobility impairments. In 2013 IEEE International Conference on Rehabilitation Robotics (ICORR): 24-26 June 2013. Seattle, WA; 2013:1-6. Jiang H, Wachs JP, Duerstock BS: Integrated vision-based robotic arm interface for operators with upper limb mobility impairments. In 2013 IEEE International Conference on Rehabilitation Robotics (ICORR): 24-26 June 2013. Seattle, WA; 2013:1-6.
54.
go back to reference Doubler JA, Childress DS: An analysis of extended physiological proprioception as a prosthesis-control technique. J Rehabil Res Dev 1984, 21: 5-18.PubMed Doubler JA, Childress DS: An analysis of extended physiological proprioception as a prosthesis-control technique. J Rehabil Res Dev 1984, 21: 5-18.PubMed
55.
go back to reference Gibbons DT, O’riain MD, Philippe-Auguste S: An above-elbow prosthesis employing programmed linkages. IEEE Trans Biomed Eng 1987, BME-34: 493-498.CrossRef Gibbons DT, O’riain MD, Philippe-Auguste S: An above-elbow prosthesis employing programmed linkages. IEEE Trans Biomed Eng 1987, BME-34: 493-498.CrossRef
56.
go back to reference Lipschutz RD, Lock B, Sensinger J, Schultz AE, Kuiken TA: Use of two-axis joystick for control of externally powered shoulder disarticulation prostheses. J Rehabil Res Dev 2011, 48: 661-667. 10.1682/JRRD.2010.04.0072PubMedPubMedCentralCrossRef Lipschutz RD, Lock B, Sensinger J, Schultz AE, Kuiken TA: Use of two-axis joystick for control of externally powered shoulder disarticulation prostheses. J Rehabil Res Dev 2011, 48: 661-667. 10.1682/JRRD.2010.04.0072PubMedPubMedCentralCrossRef
57.
go back to reference Losier Y, Englehart K, Hudgins B: Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm. J Rehabil Res Dev 2011, 48: 669-678. 10.1682/JRRD.2010.08.0165PubMedCrossRef Losier Y, Englehart K, Hudgins B: Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm. J Rehabil Res Dev 2011, 48: 669-678. 10.1682/JRRD.2010.08.0165PubMedCrossRef
58.
go back to reference Takagi M, Iwata K, Takahashi Y, Yamamoto S-I, Koyama H, Komeda T: Development of a grip aid system using air cylinders. In IEEE International Conference on Robotics and Automation, 2009 ICRA’09: 12-17 May 2009. Kobe; 2009:2312-2317.CrossRef Takagi M, Iwata K, Takahashi Y, Yamamoto S-I, Koyama H, Komeda T: Development of a grip aid system using air cylinders. In IEEE International Conference on Robotics and Automation, 2009 ICRA’09: 12-17 May 2009. Kobe; 2009:2312-2317.CrossRef
59.
go back to reference Font-Llagunes JM, Pàmies-Vilà R, Alonso J, Lugrís U: Simulation and design of an active orthosis for an incomplete spinal cord injured subject. Procedia IUTAM 2011, 2: 68-81. [IUTAM Symposium on Human Body Dynamics]CrossRef Font-Llagunes JM, Pàmies-Vilà R, Alonso J, Lugrís U: Simulation and design of an active orthosis for an incomplete spinal cord injured subject. Procedia IUTAM 2011, 2: 68-81. [IUTAM Symposium on Human Body Dynamics]CrossRef
60.
go back to reference Ragonesi D, Agrawal S, Sample W, Rahman T: Series elastic actuator control of a powered exoskeleton. Conf Proc IEEE Eng Med Biol Soc 2011, 2011: 3515-3518.PubMed Ragonesi D, Agrawal S, Sample W, Rahman T: Series elastic actuator control of a powered exoskeleton. Conf Proc IEEE Eng Med Biol Soc 2011, 2011: 3515-3518.PubMed
61.
go back to reference Rahman T, Ramanathan R, Stroud S, Sample W, Seliktar R, Harwin W, Alexander M, Scavina M: Towards the control of a powered orthosis for people with muscular dystrophy. Proc Inst Mech Eng H J Eng Med 2001, 215: 267-274. 10.1243/0954411011535858CrossRef Rahman T, Ramanathan R, Stroud S, Sample W, Seliktar R, Harwin W, Alexander M, Scavina M: Towards the control of a powered orthosis for people with muscular dystrophy. Proc Inst Mech Eng H J Eng Med 2001, 215: 267-274. 10.1243/0954411011535858CrossRef
62.
go back to reference Lobo-Prat J, Kooren PN, Keemink AQL, Paalman MI, Hekman EEG, Veltink PH, Stienen AHA, Koopman BFJM: Design and control of an experimental active elbow support for adult Duchenne Muscular Dystrophy patients. In Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS EMBS International Conference on 12-15 Aug. 2014. Sao Paulo, Brazil; 2014:187-192. Lobo-Prat J, Kooren PN, Keemink AQL, Paalman MI, Hekman EEG, Veltink PH, Stienen AHA, Koopman BFJM: Design and control of an experimental active elbow support for adult Duchenne Muscular Dystrophy patients. In Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS EMBS International Conference on 12-15 Aug. 2014. Sao Paulo, Brazil; 2014:187-192.
63.
go back to reference Abbruzzese K, Lee D, Swedberg A, Talasan H, Paliwal M: An innovative design for an Assistive Arm Orthosis for stroke and muscle dystrophy. In Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast:1–3April 2011. Troy, New York; 2011:1-2.CrossRef Abbruzzese K, Lee D, Swedberg A, Talasan H, Paliwal M: An innovative design for an Assistive Arm Orthosis for stroke and muscle dystrophy. In Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast:1–3April 2011. Troy, New York; 2011:1-2.CrossRef
64.
go back to reference Baklouti M, Guyot P-A, Monacelli E, Couvet S: Force controlled upper-limb powered exoskeleton for rehabilitation. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008 IROS 2008: 22-26 Sept. 2008. Nice; 2008:4202.CrossRef Baklouti M, Guyot P-A, Monacelli E, Couvet S: Force controlled upper-limb powered exoskeleton for rehabilitation. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008 IROS 2008: 22-26 Sept. 2008. Nice; 2008:4202.CrossRef
65.
go back to reference Huo W, Huang J, Wang Y, Wu J: Control of a rehabilitation robotic exoskeleton based on intentional reaching direction. In International Symposium on Micro-NanoMechatronics and Human Science (MHS): 7-10 Nov. 2010. Nagoya, Japan; 2010:357-362. Huo W, Huang J, Wang Y, Wu J: Control of a rehabilitation robotic exoskeleton based on intentional reaching direction. In International Symposium on Micro-NanoMechatronics and Human Science (MHS): 7-10 Nov. 2010. Nagoya, Japan; 2010:357-362.
66.
go back to reference Nilsson M, Ingvast J, Wikander J, von Holst H: The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. In 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES): 17-19 Dec. 2012. Langkawi; 2012:412-417.CrossRef Nilsson M, Ingvast J, Wikander J, von Holst H: The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. In 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES): 17-19 Dec. 2012. Langkawi; 2012:412-417.CrossRef
67.
go back to reference Abbott WW, Faisal AA: Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain–machine interfaces. J Neural Eng 2012, 9: 046016. 10.1088/1741-2560/9/4/046016PubMedCrossRef Abbott WW, Faisal AA: Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain–machine interfaces. J Neural Eng 2012, 9: 046016. 10.1088/1741-2560/9/4/046016PubMedCrossRef
68.
go back to reference Duvinage M, Castermans T, Dutoit T: Control of a lower limb active prosthesis with eye movement sequences. In IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB): 11-15 April 2011. Paris; 2011:1-7.CrossRef Duvinage M, Castermans T, Dutoit T: Control of a lower limb active prosthesis with eye movement sequences. In IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB): 11-15 April 2011. Paris; 2011:1-7.CrossRef
69.
go back to reference Chen Y, Newman WS: A human-robot interface based on electrooculography. In IEEE International Conference on Robotics and Automation, 2004 Proceedings ICRA’04: April 26-May 1, 2004. Volume 1. Barcelona; 2004:243-248.CrossRef Chen Y, Newman WS: A human-robot interface based on electrooculography. In IEEE International Conference on Robotics and Automation, 2004 Proceedings ICRA’04: April 26-May 1, 2004. Volume 1. Barcelona; 2004:243-248.CrossRef
70.
go back to reference Craig DA, Nguyen HT: Wireless real-time head movement system using a personal digital assistant (PDA) for control of a power wheelchair. In Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th Annual International Conference of the: 17-18 Jan. 2006. Shaghai Barcelona; 2006:772-775. Craig DA, Nguyen HT: Wireless real-time head movement system using a personal digital assistant (PDA) for control of a power wheelchair. In Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th Annual International Conference of the: 17-18 Jan. 2006. Shaghai Barcelona; 2006:772-775.
71.
go back to reference Fusco DA, Balbinot A: Prototype for managing the wheelchair movements by accelerometry. Sens Transducers 2011, 126: 31-41. Fusco DA, Balbinot A: Prototype for managing the wheelchair movements by accelerometry. Sens Transducers 2011, 126: 31-41.
72.
go back to reference Hinkel JB III: Head-guided wheelchair control system. In ASSETS’10 - Proceedings of the 12th International ACM SIGACCESS Conference on Computers and Accessibility: 25-27 Oct. 2010. Orlando; 2010:313-314.CrossRef Hinkel JB III: Head-guided wheelchair control system. In ASSETS’10 - Proceedings of the 12th International ACM SIGACCESS Conference on Computers and Accessibility: 25-27 Oct. 2010. Orlando; 2010:313-314.CrossRef
73.
go back to reference Baklouti M, Monacelli E, Guitteny V, Couvet S: Intelligent assistive exoskeleton with vision based interface. In Smart Homes and Health Telematics. Edited by: Helal S, Mitra S, Wong J, Chang CK, Mokhtari M. Berlin Heidelberg: Springer; 2008:123-135. [Lecture Notes in Computer Science, vol. 5120]CrossRef Baklouti M, Monacelli E, Guitteny V, Couvet S: Intelligent assistive exoskeleton with vision based interface. In Smart Homes and Health Telematics. Edited by: Helal S, Mitra S, Wong J, Chang CK, Mokhtari M. Berlin Heidelberg: Springer; 2008:123-135. [Lecture Notes in Computer Science, vol. 5120]CrossRef
74.
go back to reference Coyle ED: Electronic wheelchair controller designed for operation by hand-operated joystick, ultrasonic noncontact head control and utterance from a small word-command vocabulary. In IEE Colloquium on New Developments in Electric Vehicles for Disabled Persons: 7 Mar 1997. London; 1995. 3/1–3/4 Coyle ED: Electronic wheelchair controller designed for operation by hand-operated joystick, ultrasonic noncontact head control and utterance from a small word-command vocabulary. In IEE Colloquium on New Developments in Electric Vehicles for Disabled Persons: 7 Mar 1997. London; 1995. 3/1–3/4
75.
76.
go back to reference Kim J, Park H, Bruce J, Sutton E, Rowles D, Pucci D, Holbrook J, Minocha J, Nardone B, West D, Laumann A, Roth E, Jones M, Veledar E, Ghovanloo M: The tongue enables computer and wheelchair control for people with spinal cord injury. Sci Transl Med 2013, 5: 213ra166. 10.1126/scitranslmed.3006296PubMedPubMedCentralCrossRef Kim J, Park H, Bruce J, Sutton E, Rowles D, Pucci D, Holbrook J, Minocha J, Nardone B, West D, Laumann A, Roth E, Jones M, Veledar E, Ghovanloo M: The tongue enables computer and wheelchair control for people with spinal cord injury. Sci Transl Med 2013, 5: 213ra166. 10.1126/scitranslmed.3006296PubMedPubMedCentralCrossRef
77.
go back to reference Struijk JJ, Lontis ER, Bentsen B, Christensen HV, Caltenco HA, Lund ME: Fully integrated wireless inductive tongue computer interface for disabled people. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 EMBC 2009:3–6Sept. 2009. Minneapolis: MN; 2009:547-550.CrossRef Struijk JJ, Lontis ER, Bentsen B, Christensen HV, Caltenco HA, Lund ME: Fully integrated wireless inductive tongue computer interface for disabled people. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 EMBC 2009:3–6Sept. 2009. Minneapolis: MN; 2009:547-550.CrossRef
78.
go back to reference Fan BH, Li KY: The speech control system of intelligent robot prosthesis. In Proceedings - 2010 2nd WRI Global Congress on Intelligent Systems, IEEE - GCIS 2010: 16-17 Dec. 2010. Volume 2. Wuhan; 2010:407-409. Fan BH, Li KY: The speech control system of intelligent robot prosthesis. In Proceedings - 2010 2nd WRI Global Congress on Intelligent Systems, IEEE - GCIS 2010: 16-17 Dec. 2010. Volume 2. Wuhan; 2010:407-409.
79.
go back to reference Simpson RC, Levine SP: Voice control of a powered wheelchair. IEEE Trans Neural Syst Rehabil Eng 2002, 10: 122-125. 10.1109/TNSRE.2002.1031981PubMedCrossRef Simpson RC, Levine SP: Voice control of a powered wheelchair. IEEE Trans Neural Syst Rehabil Eng 2002, 10: 122-125. 10.1109/TNSRE.2002.1031981PubMedCrossRef
80.
go back to reference Rogalla O, Ehrenmann M, Zollner R, Becher R, Dillmann R: Using gesture and speech control for commanding a robot assistant. In 11th IEEE International Workshop on Robot and Human Interactive Communication, 2002 Proceedings: 27-27 Sept. 2002. Berlin; 2002:454-459.CrossRef Rogalla O, Ehrenmann M, Zollner R, Becher R, Dillmann R: Using gesture and speech control for commanding a robot assistant. In 11th IEEE International Workshop on Robot and Human Interactive Communication, 2002 Proceedings: 27-27 Sept. 2002. Berlin; 2002:454-459.CrossRef
81.
go back to reference Johnson GR, Carus DA, Parrini G, Scattareggia Marchese S, Valeggi R: The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng H J Eng Med 2001, 215: 275-284. 10.1243/0954411011535867CrossRef Johnson GR, Carus DA, Parrini G, Scattareggia Marchese S, Valeggi R: The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng H J Eng Med 2001, 215: 275-284. 10.1243/0954411011535867CrossRef
82.
go back to reference Dicianno BE, Cooper RA, Coltellaro J: Joystick control for powered mobility: current state of technology and future directions. Phys Med Rehabil Clin N Am 2010, 21: 79-86. 10.1016/j.pmr.2009.07.013PubMedPubMedCentralCrossRef Dicianno BE, Cooper RA, Coltellaro J: Joystick control for powered mobility: current state of technology and future directions. Phys Med Rehabil Clin N Am 2010, 21: 79-86. 10.1016/j.pmr.2009.07.013PubMedPubMedCentralCrossRef
83.
go back to reference Maheu V, Frappier J, Archambault PS, Routhier F: Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities. In 2011 IEEE International Conference on Rehabilitation Robotics (ICORR): June 29 2011-July 1 2011. Zurich; 2011:1-5.CrossRef Maheu V, Frappier J, Archambault PS, Routhier F: Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities. In 2011 IEEE International Conference on Rehabilitation Robotics (ICORR): June 29 2011-July 1 2011. Zurich; 2011:1-5.CrossRef
84.
go back to reference Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM: Brain–computer interfaces for communication and control. Clin Neurophysiol 2002, 113: 767-791. 10.1016/S1388-2457(02)00057-3PubMedCrossRef Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM: Brain–computer interfaces for communication and control. Clin Neurophysiol 2002, 113: 767-791. 10.1016/S1388-2457(02)00057-3PubMedCrossRef
85.
go back to reference Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C: Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 2000, 292: 211-214. 10.1016/S0304-3940(00)01471-3PubMedCrossRef Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C: Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 2000, 292: 211-214. 10.1016/S0304-3940(00)01471-3PubMedCrossRef
86.
go back to reference Do AH, Wang PT, King CE, Chun SN, Nenadic Z: Brain-computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 2013, 10: 111. 10.1186/1743-0003-10-111PubMedPubMedCentralCrossRef Do AH, Wang PT, King CE, Chun SN, Nenadic Z: Brain-computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 2013, 10: 111. 10.1186/1743-0003-10-111PubMedPubMedCentralCrossRef
87.
go back to reference Wang S, Wang L, Meijneke C, van Asseldonk E, Hoellinger T, Cheron G, Ivanenko Y, La Scaleia V, Sylos-Labini F, Molinari M, Tamburella F, Pisotta I, Thorsteinsson F, Ilzkovitz M, Gancent J, Nevatia Y, Hauffe R, Zanow F, van der Kooij H: Design and Control of the MINDWALKER Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2014, 99: 1.CrossRef Wang S, Wang L, Meijneke C, van Asseldonk E, Hoellinger T, Cheron G, Ivanenko Y, La Scaleia V, Sylos-Labini F, Molinari M, Tamburella F, Pisotta I, Thorsteinsson F, Ilzkovitz M, Gancent J, Nevatia Y, Hauffe R, Zanow F, van der Kooij H: Design and Control of the MINDWALKER Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2014, 99: 1.CrossRef
88.
go back to reference Kaufmann T, Herweg A, Kübler A: Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. J Neuroeng Rehabil 2014, 11: 7. 10.1186/1743-0003-11-7PubMedPubMedCentralCrossRef Kaufmann T, Herweg A, Kübler A: Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. J Neuroeng Rehabil 2014, 11: 7. 10.1186/1743-0003-11-7PubMedPubMedCentralCrossRef
89.
go back to reference Schultz AE, Kuiken TA: Neural interfaces for control of upper limb prostheses: the state of the Art and future possibilities. PM&R 2011, 3: 55-67.CrossRef Schultz AE, Kuiken TA: Neural interfaces for control of upper limb prostheses: the state of the Art and future possibilities. PM&R 2011, 3: 55-67.CrossRef
90.
go back to reference Millán J del R: Brain–Computer Interfaces. In Introduction to Neural Engineering for Motor Rehabilitation. Edited by: Farina D, Jensen W, Akay M. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2013:237-252. Millán J del R: Brain–Computer Interfaces. In Introduction to Neural Engineering for Motor Rehabilitation. Edited by: Farina D, Jensen W, Akay M. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2013:237-252.
91.
go back to reference Allison BZ, Dunne S, Leeb R, Millán J del R, Nijholt A: Recent and Upcoming BCI Progress: Overview, Analysis, and Recommendations. In Towards Practical Brain-Computer Interfaces. Edited by: Allison BZ, Dunne S, Leeb R, Millán JDR, Nijholt A. Berlin Heidelberg: Springer; 2013:1-13. [Biological and Medical Physics, Biomedical Engineering]CrossRef Allison BZ, Dunne S, Leeb R, Millán J del R, Nijholt A: Recent and Upcoming BCI Progress: Overview, Analysis, and Recommendations. In Towards Practical Brain-Computer Interfaces. Edited by: Allison BZ, Dunne S, Leeb R, Millán JDR, Nijholt A. Berlin Heidelberg: Springer; 2013:1-13. [Biological and Medical Physics, Biomedical Engineering]CrossRef
92.
go back to reference Perdikis S, Leeb R, Williamson J, Ramsay A, Tavella M, Desideri L, Hoogerwerf E-J, Al-Khodairy A, Murray-Smith R, Millán JDR: Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller. J Neural Eng 2014, 11: 036003. 10.1088/1741-2560/11/3/036003PubMedCrossRef Perdikis S, Leeb R, Williamson J, Ramsay A, Tavella M, Desideri L, Hoogerwerf E-J, Al-Khodairy A, Murray-Smith R, Millán JDR: Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller. J Neural Eng 2014, 11: 036003. 10.1088/1741-2560/11/3/036003PubMedCrossRef
93.
go back to reference Sitaram R, Caria A, Birbaumer N: Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw 2009, 22: 1320-1328. 10.1016/j.neunet.2009.05.009PubMedCrossRef Sitaram R, Caria A, Birbaumer N: Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw 2009, 22: 1320-1328. 10.1016/j.neunet.2009.05.009PubMedCrossRef
94.
go back to reference Kanoh S, Murayama YM, Miyamoto K, Yoshinobu T, Kawashima R: A NIRS-based brain-computer interface system during motor imagery: system development and online feedback training. Conf Proc IEEE Eng Med Biol Soc 2009, 2009: 594-597.PubMed Kanoh S, Murayama YM, Miyamoto K, Yoshinobu T, Kawashima R: A NIRS-based brain-computer interface system during motor imagery: system development and online feedback training. Conf Proc IEEE Eng Med Biol Soc 2009, 2009: 594-597.PubMed
95.
go back to reference Weiskopf N: Real-time fMRI and its application to neurofeedback. NeuroImage 2012, 62: 682-692. 10.1016/j.neuroimage.2011.10.009PubMedCrossRef Weiskopf N: Real-time fMRI and its application to neurofeedback. NeuroImage 2012, 62: 682-692. 10.1016/j.neuroimage.2011.10.009PubMedCrossRef
96.
go back to reference Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N: Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. NeuroImage 2003, 19: 577-586. 10.1016/S1053-8119(03)00145-9PubMedCrossRef Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N: Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. NeuroImage 2003, 19: 577-586. 10.1016/S1053-8119(03)00145-9PubMedCrossRef
97.
go back to reference Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T: A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf Syst 2007, E90-D: 1028-1037. 10.1093/ietisy/e90-d.7.1028CrossRef Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T: A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf Syst 2007, E90-D: 1028-1037. 10.1093/ietisy/e90-d.7.1028CrossRef
98.
go back to reference Sorger B, Dahmen B, Reithler J, Gosseries O, Maudoux A, Laureys S, Goebel R: Another kind of “BOLD Response”: answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res 2009, 177: 275-292.PubMedCrossRef Sorger B, Dahmen B, Reithler J, Gosseries O, Maudoux A, Laureys S, Goebel R: Another kind of “BOLD Response”: answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res 2009, 177: 275-292.PubMedCrossRef
99.
go back to reference Yoo S-S, Fairneny T, Chen N-K, Choo S-E, Panych LP, Park H, Lee S-Y, Jolesz FA: Brain-computer interface using fMRI: spatial navigation by thoughts. NeuroReport 2004, 15: 1591-1595. 10.1097/01.wnr.0000133296.39160.fePubMedCrossRef Yoo S-S, Fairneny T, Chen N-K, Choo S-E, Panych LP, Park H, Lee S-Y, Jolesz FA: Brain-computer interface using fMRI: spatial navigation by thoughts. NeuroReport 2004, 15: 1591-1595. 10.1097/01.wnr.0000133296.39160.fePubMedCrossRef
100.
go back to reference Ayaz H, Shewokis PA, Bunce S, Onaral B: An optical brain computer interface for environmental control. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE: Aug. 30 2011-Sept. 3 2011. Boston, MA; 2011:6327-6330.CrossRef Ayaz H, Shewokis PA, Bunce S, Onaral B: An optical brain computer interface for environmental control. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE: Aug. 30 2011-Sept. 3 2011. Boston, MA; 2011:6327-6330.CrossRef
101.
go back to reference Ward BD, Mazaheri Y: Information transfer rate in fMRI experiments measured using mutual information theory. J Neurosci Methods 2008, 167: 22-30. 10.1016/j.jneumeth.2007.06.027PubMedCrossRef Ward BD, Mazaheri Y: Information transfer rate in fMRI experiments measured using mutual information theory. J Neurosci Methods 2008, 167: 22-30. 10.1016/j.jneumeth.2007.06.027PubMedCrossRef
102.
go back to reference Power SD, Kushki A, Chau T: Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. J Neural Eng 2011, 8: 066004. 10.1088/1741-2560/8/6/066004PubMedCrossRef Power SD, Kushki A, Chau T: Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. J Neural Eng 2011, 8: 066004. 10.1088/1741-2560/8/6/066004PubMedCrossRef
103.
104.
go back to reference Spires MC, Kelly BM, Davis AJ: Prosthetic Restoration and Rehabilitation of the Upper and Lower Extremity. New York, USA: Demos Medical Publishing; 2013. Spires MC, Kelly BM, Davis AJ: Prosthetic Restoration and Rehabilitation of the Upper and Lower Extremity. New York, USA: Demos Medical Publishing; 2013.
105.
go back to reference Roche AD, Rehbaum H, Farina D, Aszmann OC: Prosthetic myoelectric control strategies: a clinical perspective. Curr Surg Rep 2014, 2: 1-11.CrossRef Roche AD, Rehbaum H, Farina D, Aszmann OC: Prosthetic myoelectric control strategies: a clinical perspective. Curr Surg Rep 2014, 2: 1-11.CrossRef
106.
go back to reference Jiménez-Fabián R, Verlinden O: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 2012, 34: 397-408. 10.1016/j.medengphy.2011.11.018PubMedCrossRef Jiménez-Fabián R, Verlinden O: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 2012, 34: 397-408. 10.1016/j.medengphy.2011.11.018PubMedCrossRef
107.
go back to reference Anam K, Al-Jumaily AA: Active exoskeleton control systems: state of the Art. Proc Eng 2012, 41: 988-994.CrossRef Anam K, Al-Jumaily AA: Active exoskeleton control systems: state of the Art. Proc Eng 2012, 41: 988-994.CrossRef
108.
go back to reference Muzumdar A (Ed): Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. 1st edition. Berlin Heidelberg: Springer; 2004. Muzumdar A (Ed): Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. 1st edition. Berlin Heidelberg: Springer; 2004.
109.
go back to reference Ison M, Artemiadis P: The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 2014, 11: 051001. 10.1088/1741-2560/11/5/051001PubMedCrossRef Ison M, Artemiadis P: The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 2014, 11: 051001. 10.1088/1741-2560/11/5/051001PubMedCrossRef
110.
go back to reference Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B, Dietl H, Aszmann OC: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 797-809.PubMedCrossRef Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B, Dietl H, Aszmann OC: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 797-809.PubMedCrossRef
111.
go back to reference Scheme E, Englehart K: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 2011, 48: 643-659. 10.1682/JRRD.2010.09.0177PubMedCrossRef Scheme E, Englehart K: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 2011, 48: 643-659. 10.1682/JRRD.2010.09.0177PubMedCrossRef
112.
go back to reference Smith LH, Hargrove LJ, Lock B, Kuiken T: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng 2011, 19: 186-192.PubMedPubMedCentralCrossRef Smith LH, Hargrove LJ, Lock B, Kuiken T: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng 2011, 19: 186-192.PubMedPubMedCentralCrossRef
113.
go back to reference Muceli S, Jiang N, Farina D: Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 623-633.PubMedCrossRef Muceli S, Jiang N, Farina D: Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 623-633.PubMedCrossRef
114.
go back to reference Rehbaum H, Jiang N, Paredes L, Amsuess S, Graimann B, Farina D: Real time simultaneous and proportional control of multiple degrees of freedom from surface EMG: preliminary results on subjects with limb deficiency. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Aug. 28 2012-Sept. 1 2012. San Diego, CA; 2012:1346-1349.CrossRef Rehbaum H, Jiang N, Paredes L, Amsuess S, Graimann B, Farina D: Real time simultaneous and proportional control of multiple degrees of freedom from surface EMG: preliminary results on subjects with limb deficiency. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Aug. 28 2012-Sept. 1 2012. San Diego, CA; 2012:1346-1349.CrossRef
115.
go back to reference Cavallaro EE, Rosen J, Perry JC, Burns S: Real-time myoprocessors for a neural controlled powered exoskeleton Arm. IEEE Trans Biomed Eng 2006, 53: 2387-2396.PubMedCrossRef Cavallaro EE, Rosen J, Perry JC, Burns S: Real-time myoprocessors for a neural controlled powered exoskeleton Arm. IEEE Trans Biomed Eng 2006, 53: 2387-2396.PubMedCrossRef
116.
go back to reference Miller LA, Lipschutz RD, Stubblefield KA, Lock BA, Huang H, Williams TW III, Weir RF, Kuiken TA: Control of a Six degree of freedom prosthetic Arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008, 89: 2057-2065. 10.1016/j.apmr.2008.05.016PubMedPubMedCentralCrossRef Miller LA, Lipschutz RD, Stubblefield KA, Lock BA, Huang H, Williams TW III, Weir RF, Kuiken TA: Control of a Six degree of freedom prosthetic Arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008, 89: 2057-2065. 10.1016/j.apmr.2008.05.016PubMedPubMedCentralCrossRef
117.
go back to reference Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JPA: Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. PNAS 2007, 104: 20061-20066. 10.1073/pnas.0706525104PubMedPubMedCentralCrossRef Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JPA: Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. PNAS 2007, 104: 20061-20066. 10.1073/pnas.0706525104PubMedPubMedCentralCrossRef
118.
go back to reference Bueno RA Jr, French B, Cooney D, Neumeister MW: Targeted muscle reinnervation of a muscle-free flap for improved prosthetic control in a shoulder amputee: case report. J Hand Surg 2011, 36: 890-893. 10.1016/j.jhsa.2011.02.020CrossRef Bueno RA Jr, French B, Cooney D, Neumeister MW: Targeted muscle reinnervation of a muscle-free flap for improved prosthetic control in a shoulder amputee: case report. J Hand Surg 2011, 36: 890-893. 10.1016/j.jhsa.2011.02.020CrossRef
119.
go back to reference Tkach DC, Young AJ, Smith LH, Rouse EJ, Hargrove LJ: Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 727-734.PubMedCrossRef Tkach DC, Young AJ, Smith LH, Rouse EJ, Hargrove LJ: Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 727-734.PubMedCrossRef
120.
go back to reference Hebert JS, Olson JL, Morhart MJ, Dawson MR, Marasco PD, Kuiken T, Chan KM: Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 765-773.PubMed Hebert JS, Olson JL, Morhart MJ, Dawson MR, Marasco PD, Kuiken T, Chan KM: Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 765-773.PubMed
121.
go back to reference Souza JM, Fey NP, Cheesborough JE, Agnew SP, Hargrove LJ, Dumanian GA: Advances in transfemoral amputee rehabilitation: early experience with targeted muscle reinnervation. Curr Surg Rep 2014, 2: 1-9.CrossRef Souza JM, Fey NP, Cheesborough JE, Agnew SP, Hargrove LJ, Dumanian GA: Advances in transfemoral amputee rehabilitation: early experience with targeted muscle reinnervation. Curr Surg Rep 2014, 2: 1-9.CrossRef
122.
go back to reference Hargrove LJ, Simon AM, Lipschutz RD, Finucane SB, Kuiken TA: Real-time myoelectric control of knee and ankle motions for transfemoral amputees. JAMA 2011, 305: 1542-1544. 10.1001/jama.2011.465PubMedCrossRef Hargrove LJ, Simon AM, Lipschutz RD, Finucane SB, Kuiken TA: Real-time myoelectric control of knee and ankle motions for transfemoral amputees. JAMA 2011, 305: 1542-1544. 10.1001/jama.2011.465PubMedCrossRef
123.
go back to reference Smith LH, Hargrove LJ: Intramuscular EMG after targeted muscle reinnervation for pattern recognition control of myoelectric prostheses. In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER):6–8Nov. 2013. San Diego, CA; 2013:1155-1158.CrossRef Smith LH, Hargrove LJ: Intramuscular EMG after targeted muscle reinnervation for pattern recognition control of myoelectric prostheses. In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER):6–8Nov. 2013. San Diego, CA; 2013:1155-1158.CrossRef
124.
go back to reference Orizio C: Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Crit Rev Biomed Eng 1993, 21: 201-243.PubMed Orizio C: Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Crit Rev Biomed Eng 1993, 21: 201-243.PubMed
125.
go back to reference Posatskiy AO, Chau T: Design and evaluation of a novel microphone-based mechanomyography sensor with cylindrical and conical acoustic chambers. Med Eng Phys 2012, 34: 1184-1190. 10.1016/j.medengphy.2011.12.007PubMedCrossRef Posatskiy AO, Chau T: Design and evaluation of a novel microphone-based mechanomyography sensor with cylindrical and conical acoustic chambers. Med Eng Phys 2012, 34: 1184-1190. 10.1016/j.medengphy.2011.12.007PubMedCrossRef
126.
go back to reference Shi J, Chang Q, Zheng Y-P: Feasibility of controlling prosthetic hand using sonomyography signal in real time: preliminary study. J Rehabil Res Dev 2010, 47: 87-98. 10.1682/JRRD.2009.03.0031PubMedCrossRef Shi J, Chang Q, Zheng Y-P: Feasibility of controlling prosthetic hand using sonomyography signal in real time: preliminary study. J Rehabil Res Dev 2010, 47: 87-98. 10.1682/JRRD.2009.03.0031PubMedCrossRef
127.
go back to reference Castellini C, Passig G: Ultrasound image features of the wrist are linearly related to finger positions. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 25-30 Sept. 2011. San Francisco, CA; 2011:2108-2114.CrossRef Castellini C, Passig G: Ultrasound image features of the wrist are linearly related to finger positions. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 25-30 Sept. 2011. San Francisco, CA; 2011:2108-2114.CrossRef
128.
go back to reference Silva OL, Sousa THS, Hoffman IO, de Camargo EDLB, de Moura FS, Martins ARC, Biasi C, Fantoni DT, Lima RG: A proposal to monitor muscle contraction through the change of electrical impedance inside a muscle. In Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS EMBS International Conference on; 12-15 Aug. 2014. Sao Paulo, Brazil; 2014:763-767. Silva OL, Sousa THS, Hoffman IO, de Camargo EDLB, de Moura FS, Martins ARC, Biasi C, Fantoni DT, Lima RG: A proposal to monitor muscle contraction through the change of electrical impedance inside a muscle. In Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS EMBS International Conference on; 12-15 Aug. 2014. Sao Paulo, Brazil; 2014:763-767.
129.
go back to reference Moromugi S, Kumano S, Ueda M, Ishimatsu T, Feng MQ, Tanaka T: A sensor to measure hardness of human tissue. In 5th IEEE Conference on Sensors, 2006: 14-16 Aug. 2006. Shanghai; 2006:388-391.CrossRef Moromugi S, Kumano S, Ueda M, Ishimatsu T, Feng MQ, Tanaka T: A sensor to measure hardness of human tissue. In 5th IEEE Conference on Sensors, 2006: 14-16 Aug. 2006. Shanghai; 2006:388-391.CrossRef
130.
go back to reference Childress DS: Presentation highlights: tunnel cineplasty. J Rehabil Res Dev 2002,39(3 SUPPL.):9-10. Childress DS: Presentation highlights: tunnel cineplasty. J Rehabil Res Dev 2002,39(3 SUPPL.):9-10.
131.
go back to reference Simpson DC: The choice of control system for the multimovement prosthesis: extended physiological proprioception (epp). Control Upper-Extremity Prostheses Orthoses 1974, 29: 146-150. Simpson DC: The choice of control system for the multimovement prosthesis: extended physiological proprioception (epp). Control Upper-Extremity Prostheses Orthoses 1974, 29: 146-150.
132.
go back to reference Brav EA, Spittler AW, Lusombe HB, Kuitert JH, Macdonald WF, Vulteejr FE, Woodard GH, Fletcher MJ, Leonard F: Cineplasty an end-result study. J Bone Joint Surg Am 1957, 39: 59-76.PubMed Brav EA, Spittler AW, Lusombe HB, Kuitert JH, Macdonald WF, Vulteejr FE, Woodard GH, Fletcher MJ, Leonard F: Cineplasty an end-result study. J Bone Joint Surg Am 1957, 39: 59-76.PubMed
133.
go back to reference Herrmann S, Attenberger A, Buchenrieder K: Prostheses control with combined near-infrared and myoelectric signals. In Computer Aided Systems Theory – EUROCAST 2011. Edited by: Moreno-Díaz R, Pichler F, Quesada-Arencibia A. Berlin Heidelberg: Springer; 2012:601-608. [Lecture Notes in Computer Science, vol. 6928]CrossRef Herrmann S, Attenberger A, Buchenrieder K: Prostheses control with combined near-infrared and myoelectric signals. In Computer Aided Systems Theory – EUROCAST 2011. Edited by: Moreno-Díaz R, Pichler F, Quesada-Arencibia A. Berlin Heidelberg: Springer; 2012:601-608. [Lecture Notes in Computer Science, vol. 6928]CrossRef
134.
go back to reference Martin H, Chevallier S, Monacelli E: Fast calibration of hand movement-based interface. In ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium): ESANN; 2012:573-578. Martin H, Chevallier S, Monacelli E: Fast calibration of hand movement-based interface. In ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium): ESANN; 2012:573-578.
135.
go back to reference Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 2004, 12: 24-31. 10.1109/TNSRE.2003.823266PubMedCrossRef Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 2004, 12: 24-31. 10.1109/TNSRE.2003.823266PubMedCrossRef
136.
go back to reference Herr H, Wilkenfeld A: User-adaptive control of a magnetorheological prosthetic knee. Ind Robot: Int J 2003, 30: 42-55. 10.1108/01439910310457706CrossRef Herr H, Wilkenfeld A: User-adaptive control of a magnetorheological prosthetic knee. Ind Robot: Int J 2003, 30: 42-55. 10.1108/01439910310457706CrossRef
137.
go back to reference Orengo G, Giovannini L, Latessa G, Saggio G, Giannini F: Characterization of piezoresistive sensors for goniometric glove in hand prostheses. In 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology, 2009 Wireless VITAE 2009: 17-20 May 2009. Aalborg; 2009:684-687.CrossRef Orengo G, Giovannini L, Latessa G, Saggio G, Giannini F: Characterization of piezoresistive sensors for goniometric glove in hand prostheses. In 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology, 2009 Wireless VITAE 2009: 17-20 May 2009. Aalborg; 2009:684-687.CrossRef
138.
go back to reference Wang L, Wang S, van Asseldonk EHF, Van Der Kooij H: Actively controlled lateral gait assistance in a lower limb exoskeleton. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS):3–7Nov. 2013. Tokyo; 2013:965-970.CrossRef Wang L, Wang S, van Asseldonk EHF, Van Der Kooij H: Actively controlled lateral gait assistance in a lower limb exoskeleton. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS):3–7Nov. 2013. Tokyo; 2013:965-970.CrossRef
139.
go back to reference Zeng G, Hemami A: An overview of robot force control. Robotica 1997, 15: 473-482. 10.1017/S026357479700057XCrossRef Zeng G, Hemami A: An overview of robot force control. Robotica 1997, 15: 473-482. 10.1017/S026357479700057XCrossRef
140.
go back to reference Ragonesi D, Agrawal S, Sample W, Rahman T: Quantifying anti-gravity torques in the design of a powered exoskeleton. Conf Proc IEEE Eng Med Biol Soc 2011, 2011: 7458-7461.PubMed Ragonesi D, Agrawal S, Sample W, Rahman T: Quantifying anti-gravity torques in the design of a powered exoskeleton. Conf Proc IEEE Eng Med Biol Soc 2011, 2011: 7458-7461.PubMed
141.
go back to reference Lo HS, Xie SQ: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 2012, 34: 261-268. 10.1016/j.medengphy.2011.10.004PubMedCrossRef Lo HS, Xie SQ: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 2012, 34: 261-268. 10.1016/j.medengphy.2011.10.004PubMedCrossRef
142.
go back to reference Betke M, Gips J, Fleming P: The Camera Mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Trans Neural Syst Rehabil Eng 2002, 10: 1-10. 10.1109/TNSRE.2002.1021581PubMedCrossRef Betke M, Gips J, Fleming P: The Camera Mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Trans Neural Syst Rehabil Eng 2002, 10: 1-10. 10.1109/TNSRE.2002.1021581PubMedCrossRef
143.
go back to reference Morimoto CH, Mimica MRM: Eye gaze tracking techniques for interactive applications. Comput Vis Image Underst 2005, 98: 4-24. 10.1016/j.cviu.2004.07.010CrossRef Morimoto CH, Mimica MRM: Eye gaze tracking techniques for interactive applications. Comput Vis Image Underst 2005, 98: 4-24. 10.1016/j.cviu.2004.07.010CrossRef
144.
go back to reference Clayton C, Platts RGS, Steinberg M, Hennequin JR: Palatal tongue controller. J Microcomput Appl 1992, 15: 9-12. 10.1016/0745-7138(92)90042-4CrossRef Clayton C, Platts RGS, Steinberg M, Hennequin JR: Palatal tongue controller. J Microcomput Appl 1992, 15: 9-12. 10.1016/0745-7138(92)90042-4CrossRef
145.
go back to reference Buchhold N US 5460186 A. Apparatus for controlling peripheral devices through tongue movement, and method of processing control signals 1995. Buchhold N US 5460186 A. Apparatus for controlling peripheral devices through tongue movement, and method of processing control signals 1995.
146.
go back to reference Wakumoto M, Masaki S, Honda K, Ohue T: A pressure sensitive palatography: application of new pressure sensitive sheet formeasuring tongue-palatal contact pressure. In Proceedings of the 5th Int. Conf. on Spoken Language Processing: Nov. 30-Dec. 4 1988. Sydney; 1998:3151-3154. Wakumoto M, Masaki S, Honda K, Ohue T: A pressure sensitive palatography: application of new pressure sensitive sheet formeasuring tongue-palatal contact pressure. In Proceedings of the 5th Int. Conf. on Spoken Language Processing: Nov. 30-Dec. 4 1988. Sydney; 1998:3151-3154.
147.
go back to reference Struijk LNS: An inductive tongue computer interface for control of computers and assistive devices. IEEE Trans Biomed Eng 2006, 53: 2594-2597.PubMedCrossRef Struijk LNS: An inductive tongue computer interface for control of computers and assistive devices. IEEE Trans Biomed Eng 2006, 53: 2594-2597.PubMedCrossRef
148.
go back to reference Huo X, Ghovanloo M: Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries. J Neural Eng 2010, 7: 026008. 10.1088/1741-2560/7/2/026008CrossRef Huo X, Ghovanloo M: Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries. J Neural Eng 2010, 7: 026008. 10.1088/1741-2560/7/2/026008CrossRef
149.
go back to reference Lontis ER, Andreasen Struijk LNS: Alternative design of inductive pointing device for oral interface for computers and wheelchairs. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Aug. 28 2012-Sept. 1 2012. San Diego, CA; 2012:3328-3331.CrossRef Lontis ER, Andreasen Struijk LNS: Alternative design of inductive pointing device for oral interface for computers and wheelchairs. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Aug. 28 2012-Sept. 1 2012. San Diego, CA; 2012:3328-3331.CrossRef
150.
go back to reference Joseph T, Nguyen H: Neural network control of wheelchairs using telemetric head movement. In Engineering in Medicine and Biology Society, 1998 Proceedings of the 20th Annual International Conference of the IEEE: 29 Oct-1 Nov 1998. Volume 5. Hong Kong; 1998:2731-2733. Joseph T, Nguyen H: Neural network control of wheelchairs using telemetric head movement. In Engineering in Medicine and Biology Society, 1998 Proceedings of the 20th Annual International Conference of the IEEE: 29 Oct-1 Nov 1998. Volume 5. Hong Kong; 1998:2731-2733.
151.
go back to reference Taylor PB, Nguyen HT: Performance of a head-movement interface for wheelchair control. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003: 17-21 Sept. 2003. Volume 2. Cancun; 2003:1590-1593. Taylor PB, Nguyen HT: Performance of a head-movement interface for wheelchair control. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003: 17-21 Sept. 2003. Volume 2. Cancun; 2003:1590-1593.
152.
go back to reference Bergasa LM, Mazo M, Gardel A, Barea R, Boquete L: Commands generation by face movements applied to the guidance of a wheelchair for handicapped people. In 15th International Conference on Pattern Recognition, 2000 Proceedings:3–7Sept. 2000. Volume 4. Barcelona; 2000:660-663.CrossRef Bergasa LM, Mazo M, Gardel A, Barea R, Boquete L: Commands generation by face movements applied to the guidance of a wheelchair for handicapped people. In 15th International Conference on Pattern Recognition, 2000 Proceedings:3–7Sept. 2000. Volume 4. Barcelona; 2000:660-663.CrossRef
153.
go back to reference Lv X, Zhang M, Li H: Robot control based on voice command. In IEEE International Conference on Automation and Logistics, 2008 ICAL 2008:1–3Sept. 2008. Qingdao; 2008:2490-2494. Lv X, Zhang M, Li H: Robot control based on voice command. In IEEE International Conference on Automation and Logistics, 2008 ICAL 2008:1–3Sept. 2008. Qingdao; 2008:2490-2494.
154.
go back to reference Romer GRBE, Stuyt HJA, Peters A: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). In 9th International Conference on Rehabilitation Robotics, 2005 ICORR 2005: 28 June-1 July 2005. Chicago, IL; 2005:201-204.CrossRef Romer GRBE, Stuyt HJA, Peters A: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). In 9th International Conference on Rehabilitation Robotics, 2005 ICORR 2005: 28 June-1 July 2005. Chicago, IL; 2005:201-204.CrossRef
155.
go back to reference Felzer T, Freisleben B: HaWCoS: the “Hands-free” wheelchair control system. In Proc ASSETS 2002. ACM Press; 2002:127-134. Felzer T, Freisleben B: HaWCoS: the “Hands-free” wheelchair control system. In Proc ASSETS 2002. ACM Press; 2002:127-134.
156.
go back to reference Han J-S, Zenn Bien Z, Kim D-J, Lee H-E, Kim J-S: Human-machine interface for wheelchair control with EMG and its evaluation. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003: 17-21 Sept. 2003. Volume 2. Cancun; 2003:1602-1605. Han J-S, Zenn Bien Z, Kim D-J, Lee H-E, Kim J-S: Human-machine interface for wheelchair control with EMG and its evaluation. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003: 17-21 Sept. 2003. Volume 2. Cancun; 2003:1602-1605.
157.
go back to reference Moon I, Lee M, Chu J, Mun M: Wearable EMG-based HCI for Electric-Powered Wheelchair Users with Motor Disabilities. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005 ICRA 2005: 18-22 April 2005. Barcelona; 2005:2649-2654. Moon I, Lee M, Chu J, Mun M: Wearable EMG-based HCI for Electric-Powered Wheelchair Users with Motor Disabilities. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005 ICRA 2005: 18-22 April 2005. Barcelona; 2005:2649-2654.
158.
go back to reference Cooper RA, Corfman TA, Fitzgerald SG, Boninger ML, Spaeth DM, Ammer W, Arva J: Performance assessment of a pushrim-activated power-assisted wheelchair control system. IEEE Trans Control Syst Technol 2002, 10: 121-126. 10.1109/87.974345CrossRef Cooper RA, Corfman TA, Fitzgerald SG, Boninger ML, Spaeth DM, Ammer W, Arva J: Performance assessment of a pushrim-activated power-assisted wheelchair control system. IEEE Trans Control Syst Technol 2002, 10: 121-126. 10.1109/87.974345CrossRef
159.
go back to reference Lalitharatne TD, Teramoto K, Hayashi Y, Kiguchi K: Towards hybrid EEG-EMG-based control approaches to be used in Bio-robotics applications: current status, challenges and future directions. Paladyn, J Behav Robotics 2013, 0: 11-18. Lalitharatne TD, Teramoto K, Hayashi Y, Kiguchi K: Towards hybrid EEG-EMG-based control approaches to be used in Bio-robotics applications: current status, challenges and future directions. Paladyn, J Behav Robotics 2013, 0: 11-18.
160.
go back to reference Simon AM, Fey NP, Ingraham KA, Young AJ, Hargrove LJ: Powered prosthesis control during walking, sitting, standing, and non-weight bearing activities using neural and mechanical inputs. In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER):6–8Nov. 2013. San Diego, CA; 2013:1174-1177.CrossRef Simon AM, Fey NP, Ingraham KA, Young AJ, Hargrove LJ: Powered prosthesis control during walking, sitting, standing, and non-weight bearing activities using neural and mechanical inputs. In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER):6–8Nov. 2013. San Diego, CA; 2013:1174-1177.CrossRef
161.
go back to reference Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans Biomed Eng 2011, 58: 2867-2875.PubMedPubMedCentralCrossRef Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans Biomed Eng 2011, 58: 2867-2875.PubMedPubMedCentralCrossRef
162.
go back to reference Zhang F, Huang H: Decoding movement intent of patient with multiple sclerosis for the powered lower extremity exoskeleton. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC):3–7July 2013. Osaka; 2013:4957-4960.CrossRef Zhang F, Huang H: Decoding movement intent of patient with multiple sclerosis for the powered lower extremity exoskeleton. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC):3–7July 2013. Osaka; 2013:4957-4960.CrossRef
163.
go back to reference Resnik L, Borgia M, Latlief G, Sasson N, Smurr-Walters L: Self-reported and performance-based outcomes using DEKA Arm. J Rehabil Res Dev 2014, 51: 351-362. 10.1682/JRRD.2013.08.0180PubMedCrossRef Resnik L, Borgia M, Latlief G, Sasson N, Smurr-Walters L: Self-reported and performance-based outcomes using DEKA Arm. J Rehabil Res Dev 2014, 51: 351-362. 10.1682/JRRD.2013.08.0180PubMedCrossRef
164.
go back to reference Carbonaro N, Anania G, Bacchereti M, Donati G, Ferretti L, Pellicci G, Parrini G, Vitetta N, Rossi DD, Tognetti A: An Innovative Multisensor Controlled Prosthetic Hand. In XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. Edited by: Romero LMR. Springer International Publishing; 2014:93-96. [IFMBE Proceedings, vol. 41]CrossRef Carbonaro N, Anania G, Bacchereti M, Donati G, Ferretti L, Pellicci G, Parrini G, Vitetta N, Rossi DD, Tognetti A: An Innovative Multisensor Controlled Prosthetic Hand. In XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. Edited by: Romero LMR. Springer International Publishing; 2014:93-96. [IFMBE Proceedings, vol. 41]CrossRef
165.
go back to reference Došen S, Cipriani C, Kostić M, Controzzi M, Carrozza MC, Popovič DB: Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. J Neuroeng Rehabil 2010, 7: 42. 10.1186/1743-0003-7-42PubMedPubMedCentralCrossRef Došen S, Cipriani C, Kostić M, Controzzi M, Carrozza MC, Popovič DB: Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. J Neuroeng Rehabil 2010, 7: 42. 10.1186/1743-0003-7-42PubMedPubMedCentralCrossRef
166.
go back to reference Corbett EA, Perreault EJ, Kuiken TA: Comparison of electromyography and force as interfaces for prosthetic control. J Rehabil Res Dev 2011, 48: 629. 10.1682/JRRD.2010.03.0028PubMedPubMedCentralCrossRef Corbett EA, Perreault EJ, Kuiken TA: Comparison of electromyography and force as interfaces for prosthetic control. J Rehabil Res Dev 2011, 48: 629. 10.1682/JRRD.2010.03.0028PubMedPubMedCentralCrossRef
167.
go back to reference Guo J-Y, Zheng Y-P, Kenney LPJ, Bowen A, Howard D, Canderle JJ: A comparative evaluation of sonomyography, electromyography, force, and wrist angle in a discrete tracking task. Ultrasound Med Biol 2011, 37: 884-891. 10.1016/j.ultrasmedbio.2011.03.008PubMedCrossRef Guo J-Y, Zheng Y-P, Kenney LPJ, Bowen A, Howard D, Canderle JJ: A comparative evaluation of sonomyography, electromyography, force, and wrist angle in a discrete tracking task. Ultrasound Med Biol 2011, 37: 884-891. 10.1016/j.ultrasmedbio.2011.03.008PubMedCrossRef
168.
go back to reference Wurth SM, Hargrove LJ: A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure. J Neuroeng Rehabil 2014, 11: 91. 10.1186/1743-0003-11-91PubMedPubMedCentralCrossRef Wurth SM, Hargrove LJ: A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure. J Neuroeng Rehabil 2014, 11: 91. 10.1186/1743-0003-11-91PubMedPubMedCentralCrossRef
169.
go back to reference Kaufmann T, Holz EM, Kubler A: Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci 2013, 11: 7. Kaufmann T, Holz EM, Kubler A: Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci 2013, 11: 7.
170.
go back to reference Simon AM, Stern K, Hargrove LJ: A comparison of proportional control methods for pattern recognition control. Conf Proc IEEE Eng Med Biol Soc 2011, 2011: 3354-3357.PubMed Simon AM, Stern K, Hargrove LJ: A comparison of proportional control methods for pattern recognition control. Conf Proc IEEE Eng Med Biol Soc 2011, 2011: 3354-3357.PubMed
171.
go back to reference Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE: Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control. J Comput Neurosci 2010, 29: 73-87. 10.1007/s10827-009-0196-9PubMedCrossRef Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE: Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control. J Comput Neurosci 2010, 29: 73-87. 10.1007/s10827-009-0196-9PubMedCrossRef
172.
go back to reference Williams MR, Kirsch RF: Evaluation of head orientation and neck muscle EMG signals as command inputs to a human #x2013; computer interface for individuals with high tetraplegia. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 485-496.PubMedPubMedCentralCrossRef Williams MR, Kirsch RF: Evaluation of head orientation and neck muscle EMG signals as command inputs to a human #x2013; computer interface for individuals with high tetraplegia. IEEE Trans Neural Syst Rehabil Eng 2008, 16: 485-496.PubMedPubMedCentralCrossRef
173.
go back to reference Lobo-Prat J, Keemink AQ, Stienen AH, Schouten AC, Veltink PH, Koopman BH: Evaluation of EMG, force and joystick as control interfaces for active arm supports. J Neuroeng Rehabil 2014, 11: 68. 10.1186/1743-0003-11-68PubMedPubMedCentralCrossRef Lobo-Prat J, Keemink AQ, Stienen AH, Schouten AC, Veltink PH, Koopman BH: Evaluation of EMG, force and joystick as control interfaces for active arm supports. J Neuroeng Rehabil 2014, 11: 68. 10.1186/1743-0003-11-68PubMedPubMedCentralCrossRef
174.
go back to reference Hill W, Kyberd P, Norling Hermansson L, Hubbard S, Stavdahl Ø, Swanson S: Upper limb prosthetic outcome measures (ULPOM): a working group and their findings. JPO J Prosthet Orthot 2009,21(Supplement):P69-P82. 10.1097/JPO.0b013e3181ae970bCrossRef Hill W, Kyberd P, Norling Hermansson L, Hubbard S, Stavdahl Ø, Swanson S: Upper limb prosthetic outcome measures (ULPOM): a working group and their findings. JPO J Prosthet Orthot 2009,21(Supplement):P69-P82. 10.1097/JPO.0b013e3181ae970bCrossRef
175.
go back to reference Scheme EJ, Englehart KB: Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional Fitts’ Law test. IEEE Trans Neural Syst Rehabil Eng 2013, 21: 616-623.PubMedCrossRef Scheme EJ, Englehart KB: Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional Fitts’ Law test. IEEE Trans Neural Syst Rehabil Eng 2013, 21: 616-623.PubMedCrossRef
176.
go back to reference Simon AM, Hargrove LJ, Lock BA, Kuiken TA: Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev 2011, 48: 619-627. 10.1682/JRRD.2010.08.0149PubMedPubMedCentralCrossRef Simon AM, Hargrove LJ, Lock BA, Kuiken TA: Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev 2011, 48: 619-627. 10.1682/JRRD.2010.08.0149PubMedPubMedCentralCrossRef
177.
go back to reference Ortiz-Catalan M, Håkansson B, Brånemark R: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 756-764.PubMedCrossRef Ortiz-Catalan M, Håkansson B, Brånemark R: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 756-764.PubMedCrossRef
178.
go back to reference Young AJ, Smith LH, Rouse EJ, Hargrove LJ: A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. J Neuroeng Rehabil 2014, 11: 5. 10.1186/1743-0003-11-5PubMedPubMedCentralCrossRef Young AJ, Smith LH, Rouse EJ, Hargrove LJ: A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. J Neuroeng Rehabil 2014, 11: 5. 10.1186/1743-0003-11-5PubMedPubMedCentralCrossRef
179.
go back to reference Casadio M, Pressman A, Acosta S, Danzinger Z, Fishbach A, Mussa-Ivaldi FA, Muir K, Tseng H, Chen D: Body machine interface: remapping motor skills after spinal cord injury. IEEE Int Conf Rehabil Robot 2011, 2011: 5975384.PubMed Casadio M, Pressman A, Acosta S, Danzinger Z, Fishbach A, Mussa-Ivaldi FA, Muir K, Tseng H, Chen D: Body machine interface: remapping motor skills after spinal cord injury. IEEE Int Conf Rehabil Robot 2011, 2011: 5975384.PubMed
180.
go back to reference Bradberry TJ, Gentili RJ, Contreras-Vidal JL: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 2010, 30: 3432-3437. 10.1523/JNEUROSCI.6107-09.2010PubMedCrossRef Bradberry TJ, Gentili RJ, Contreras-Vidal JL: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 2010, 30: 3432-3437. 10.1523/JNEUROSCI.6107-09.2010PubMedCrossRef
181.
go back to reference Kim HK, Biggs SJ, Schloerb DW, Carmena JM, Lebedev MA, Nicolelis MAL, Srinivasan MA: Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 2006, 53: 1164-1173. 10.1109/TBME.2006.870235PubMedCrossRef Kim HK, Biggs SJ, Schloerb DW, Carmena JM, Lebedev MA, Nicolelis MAL, Srinivasan MA: Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 2006, 53: 1164-1173. 10.1109/TBME.2006.870235PubMedCrossRef
182.
go back to reference Cowan RE, Fregly BJ, Boninger ML, Chan L, Rodgers MM, Reinkensmeyer DJ: Recent trends in assistive technology for mobility. J Neuroeng Rehabil 2012, 9: 20. 10.1186/1743-0003-9-20PubMedPubMedCentralCrossRef Cowan RE, Fregly BJ, Boninger ML, Chan L, Rodgers MM, Reinkensmeyer DJ: Recent trends in assistive technology for mobility. J Neuroeng Rehabil 2012, 9: 20. 10.1186/1743-0003-9-20PubMedPubMedCentralCrossRef
183.
go back to reference Radhakrishnan SM, Baker SN, Jackson A: Learning a novel myoelectric-controlled interface task. J Neurophysiol 2008, 100: 2397-2408. 10.1152/jn.90614.2008PubMedPubMedCentralCrossRef Radhakrishnan SM, Baker SN, Jackson A: Learning a novel myoelectric-controlled interface task. J Neurophysiol 2008, 100: 2397-2408. 10.1152/jn.90614.2008PubMedPubMedCentralCrossRef
184.
go back to reference Pistohl T, Cipriani C, Jackson A, Nazarpour K: Abstract and proportional myoelectric control for multi-fingered hand prostheses. Ann Biomed Eng 2013, 41: 2687-2698. 10.1007/s10439-013-0876-5PubMedPubMedCentralCrossRef Pistohl T, Cipriani C, Jackson A, Nazarpour K: Abstract and proportional myoelectric control for multi-fingered hand prostheses. Ann Biomed Eng 2013, 41: 2687-2698. 10.1007/s10439-013-0876-5PubMedPubMedCentralCrossRef
185.
go back to reference Antuvan CW, Ison M, Artemiadis P: Embedded human control of robots using myoelectric interfaces. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 820-827.PubMedCrossRef Antuvan CW, Ison M, Artemiadis P: Embedded human control of robots using myoelectric interfaces. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 820-827.PubMedCrossRef
186.
go back to reference Farrell TR, Weir RF, Heckathorne CW, Childress DS: The effects of static friction and backlash on extended physiological proprioception control of a powered prosthesis. J Rehabil Res Dev 2005, 42: 327-341.PubMedCrossRef Farrell TR, Weir RF, Heckathorne CW, Childress DS: The effects of static friction and backlash on extended physiological proprioception control of a powered prosthesis. J Rehabil Res Dev 2005, 42: 327-341.PubMedCrossRef
187.
go back to reference Farrell TR, Weir RF: The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 111-118.PubMedCrossRef Farrell TR, Weir RF: The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng 2007, 15: 111-118.PubMedCrossRef
188.
go back to reference Gijsberts A, Bohra R, Sierra Gonzalez D, Werner A, Nowak M, Caputo B, Roa MA, Castellini C: Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front Neurorobot 2014, 8: 8.PubMedPubMedCentralCrossRef Gijsberts A, Bohra R, Sierra Gonzalez D, Werner A, Nowak M, Caputo B, Roa MA, Castellini C: Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front Neurorobot 2014, 8: 8.PubMedPubMedCentralCrossRef
189.
go back to reference Collinger JL, Boninger ML, Bruns TM, Curley K, Wang W, Weber DJ: Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J Rehabil Res Dev 2013, 50: 145-160. 10.1682/JRRD.2011.11.0213PubMedPubMedCentralCrossRef Collinger JL, Boninger ML, Bruns TM, Curley K, Wang W, Weber DJ: Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J Rehabil Res Dev 2013, 50: 145-160. 10.1682/JRRD.2011.11.0213PubMedPubMedCentralCrossRef
190.
go back to reference McFarland DJ, Sarnacki WA, Wolpaw JR: ElectroencephalographiC (EEG) Control of three-dimensional movement. J Neural Eng 2010, 7: 036007. 10.1088/1741-2560/7/3/036007PubMedPubMedCentralCrossRef McFarland DJ, Sarnacki WA, Wolpaw JR: ElectroencephalographiC (EEG) Control of three-dimensional movement. J Neural Eng 2010, 7: 036007. 10.1088/1741-2560/7/3/036007PubMedPubMedCentralCrossRef
191.
go back to reference Lock BA, Simon AM, Stubblefield K, Hargrove LJ: Prosthesis-guided training for practical use of pattern recognition control of prostheses. J Prosthet Orthot 2012,24(2):56-64. 10.1097/JPO.0b013e3182515437PubMedPubMedCentralCrossRef Lock BA, Simon AM, Stubblefield K, Hargrove LJ: Prosthesis-guided training for practical use of pattern recognition control of prostheses. J Prosthet Orthot 2012,24(2):56-64. 10.1097/JPO.0b013e3182515437PubMedPubMedCentralCrossRef
Metadata
Title
Non-invasive control interfaces for intention detection in active movement-assistive devices
Authors
Joan Lobo-Prat
Peter N Kooren
Arno HA Stienen
Just L Herder
Bart FJM Koopman
Peter H Veltink
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-168

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue