Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation

Authors: Junpei Takaki, Koki Fujimori, Marie Miura, Takeshi Suzuki, Yuko Sekino, Kaoru Sato

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

In the central nervous system, astrocytic L-glutamate (L-Glu) transporters maintain extracellular L-Glu below neurotoxic levels, but their function is impaired with neuroinflammation. Microglia become activated with inflammation; however, the correlation between activated microglia and the impairment of L-Glu transporters is unknown.

Methods

We used a mixed culture composed of astrocytes, microglia, and neurons. To quantify L-Glu transporter function, we measured the extracellular L-Glu that remained 30 min after an application of L-Glu to the medium (the starting concentration was 100 μM). We determined the optimal conditions of lipopolysaccharide (LPS) treatment to establish an inflammation model without cell death. We examined the predominant subtypes of L-Glu transporters and the changes in the expression levels of these transporters in this inflammation model. We then investigated the role of activated microglia in the changes in L-Glu transporter expression and the underlying mechanisms in this inflammation model.

Results

Because LPS (10 ng/mL, 72 h) caused a significant increase in the levels of L-Glu remaining but did not affect cell viability, we adopted this condition for our inflammation model without cell death. GLAST was the predominant L-Glu transporter subtype, and its expression decreased in this inflammation model. As a result of their release of L-Glu, activated microglia were shown to be essential for the significant decrease in L-Glu uptake. The serial application of L-Glu caused a significant decrease in L-Glu uptake and GLAST expression in the astrocyte culture. The hemichannel inhibitor carbenoxolone (CBX) inhibited L-Glu release from activated microglia and ameliorated the decrease in GLAST expression in the inflammation model. In addition, the elevation of the astrocytic intracellular L-Glu itself caused the downregulation of GLAST.

Conclusions

Our findings suggest that activated microglia trigger the elevation of extracellular L-Glu through their own release of L-Glu, and astrocyte L-Glu transporters are downregulated as a result of the elevation of astrocytic intracellular L-Glu levels, causing a further increase of extracellular L-Glu. Our data suggest the new hypothesis that activated microglia collude with astrocytes to cause the elevation of extracellular L-Glu in the early stages of neuroinflammation.
Literature
1.
go back to reference Kumar A, Singh RL, Babu GN: Cell death mechanisms in the early stages of acute glutamate neurotoxicity. Neurosci Res 2010, 66:271–278.CrossRefPubMed Kumar A, Singh RL, Babu GN: Cell death mechanisms in the early stages of acute glutamate neurotoxicity. Neurosci Res 2010, 66:271–278.CrossRefPubMed
2.
3.
go back to reference Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16:675–686.CrossRefPubMed Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16:675–686.CrossRefPubMed
4.
go back to reference Lauderback CM, Harris-White ME, Wang Y, Pedigo NW Jr, Carney JM, Butterfield DA: Amyloid beta-peptide inhibits Na+-dependent glutamate uptake. Life Sci 1999, 65:1977–1981.CrossRefPubMed Lauderback CM, Harris-White ME, Wang Y, Pedigo NW Jr, Carney JM, Butterfield DA: Amyloid beta-peptide inhibits Na+-dependent glutamate uptake. Life Sci 1999, 65:1977–1981.CrossRefPubMed
5.
go back to reference Rothstein JD: Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin Neurosci 1995–1996, 3:348–359. Rothstein JD: Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin Neurosci 1995–1996, 3:348–359.
6.
go back to reference Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG: Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005, 102:15653–15658.CrossRefPubMedPubMedCentral Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG: Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005, 102:15653–15658.CrossRefPubMedPubMedCentral
7.
go back to reference Beart PM, O’Shea RD: Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007, 150:5–17.CrossRefPubMed Beart PM, O’Shea RD: Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007, 150:5–17.CrossRefPubMed
8.
go back to reference Guo F, Sun F, Yu JL, Wang QH, Tu DY, Mao XY, Liu R, Wu KC, Xie N, Hao LY, Cai JQ: Abnormal expressions of glutamate transporters and metabotropic glutamate receptor 1 in the spontaneously epileptic rat hippocampus. Brain Res Bull 2010, 81:510–516.CrossRefPubMed Guo F, Sun F, Yu JL, Wang QH, Tu DY, Mao XY, Liu R, Wu KC, Xie N, Hao LY, Cai JQ: Abnormal expressions of glutamate transporters and metabotropic glutamate receptor 1 in the spontaneously epileptic rat hippocampus. Brain Res Bull 2010, 81:510–516.CrossRefPubMed
9.
go back to reference Rakhade SN, Loeb JA: Focal reduction of neuronal glutamate transporters in human neocortical epilepsy. Epilepsia 2008, 49:226–236.CrossRefPubMed Rakhade SN, Loeb JA: Focal reduction of neuronal glutamate transporters in human neocortical epilepsy. Epilepsia 2008, 49:226–236.CrossRefPubMed
10.
go back to reference Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PND: Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2002, 125:32–43.CrossRefPubMed Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PND: Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2002, 125:32–43.CrossRefPubMed
11.
go back to reference Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, de Witte P, Ballini C, Corte LD, Dexter D: Neuro-inflammation induced in the hippocampus of ‘binge drinking’ rats may be mediated by elevated extracellular glutamate content. J Neurochem 2009, 111:1119–1128.CrossRefPubMed Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, de Witte P, Ballini C, Corte LD, Dexter D: Neuro-inflammation induced in the hippocampus of ‘binge drinking’ rats may be mediated by elevated extracellular glutamate content. J Neurochem 2009, 111:1119–1128.CrossRefPubMed
12.
go back to reference Castillo J, Dávalos A, Alvarez-Sabín J, Pumar JM, Leira R, Silva Y, Montaner J, Kase CS: Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 2002, 58:624–629.CrossRefPubMed Castillo J, Dávalos A, Alvarez-Sabín J, Pumar JM, Leira R, Silva Y, Montaner J, Kase CS: Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 2002, 58:624–629.CrossRefPubMed
13.
14.
go back to reference Lehnardt S: Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010, 58:253–263.PubMed Lehnardt S: Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010, 58:253–263.PubMed
15.
go back to reference Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193–201.CrossRefPubMed Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193–201.CrossRefPubMed
16.
go back to reference Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed
17.
19.
go back to reference Nakajima K, Kohsaka S: Microglia: activation and their significance in the central nervous system. J Biochem 2001, 130:169–175.CrossRefPubMed Nakajima K, Kohsaka S: Microglia: activation and their significance in the central nervous system. J Biochem 2001, 130:169–175.CrossRefPubMed
20.
go back to reference Block ML, Hong JS: Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 2007, 35:1127–1132.CrossRefPubMed Block ML, Hong JS: Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 2007, 35:1127–1132.CrossRefPubMed
21.
go back to reference Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006, 281:21362–21368.CrossRefPubMed Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006, 281:21362–21368.CrossRefPubMed
22.
go back to reference Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A: Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 2008, 82:1111–1116.CrossRefPubMed Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A: Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 2008, 82:1111–1116.CrossRefPubMed
23.
go back to reference Higashi Y, Segawa S, Matsuo T, Nakamura S, Kikkawa Y, Nishida K, Nagasawa K: Microglial zinc uptake via zinc transporters induces ATP release and the activation of microglia. Glia 2011, 59:1933–1945.CrossRefPubMed Higashi Y, Segawa S, Matsuo T, Nakamura S, Kikkawa Y, Nishida K, Nagasawa K: Microglial zinc uptake via zinc transporters induces ATP release and the activation of microglia. Glia 2011, 59:1933–1945.CrossRefPubMed
24.
go back to reference Kim SY, Moon JH, Lee HG, Kim SU, Lee YB: ATP released from beta-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp Mol Med 2007, 39:820–827.CrossRefPubMed Kim SY, Moon JH, Lee HG, Kim SU, Lee YB: ATP released from beta-amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp Mol Med 2007, 39:820–827.CrossRefPubMed
25.
go back to reference Carmen J, Rothstein JD, Kerr DA: Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res 2009, 1263:143–154.CrossRefPubMedPubMedCentral Carmen J, Rothstein JD, Kerr DA: Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res 2009, 1263:143–154.CrossRefPubMedPubMedCentral
26.
go back to reference Prow NA, Irani DN: The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 2008, 105:1276–1286.CrossRefPubMedPubMedCentral Prow NA, Irani DN: The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 2008, 105:1276–1286.CrossRefPubMedPubMedCentral
27.
go back to reference Volterra A, Trotti D, Racagni G: Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 1994, 46:986–992.PubMed Volterra A, Trotti D, Racagni G: Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 1994, 46:986–992.PubMed
28.
go back to reference Liu YP, Yang CS, Chen MC, Sun SH, Tzeng SF: Ca(2+)-dependent reduction of glutamate aspartate transporter GLAST expression in astrocytes by P2X(7) receptor-mediated phosphoinositide 3-kinase signaling. J Neurochem 2010, 113:213–227.CrossRefPubMed Liu YP, Yang CS, Chen MC, Sun SH, Tzeng SF: Ca(2+)-dependent reduction of glutamate aspartate transporter GLAST expression in astrocytes by P2X(7) receptor-mediated phosphoinositide 3-kinase signaling. J Neurochem 2010, 113:213–227.CrossRefPubMed
29.
go back to reference Sato K, Matsuki N, Ohno Y, Nakazawa K: Estrogens inhibit l-glutamate uptake activity of astrocytes via membrane estrogen receptor alpha. J Neurochem 2003, 86:1498–1505.CrossRefPubMed Sato K, Matsuki N, Ohno Y, Nakazawa K: Estrogens inhibit l-glutamate uptake activity of astrocytes via membrane estrogen receptor alpha. J Neurochem 2003, 86:1498–1505.CrossRefPubMed
30.
go back to reference Sato K, Saito Y, Oka J, Ohwada T, Nakazawa K: Effects of tamoxifen on L-glutamate transporters of astrocytes. J Pharmacol Sci 2008, 107:226–230.CrossRefPubMed Sato K, Saito Y, Oka J, Ohwada T, Nakazawa K: Effects of tamoxifen on L-glutamate transporters of astrocytes. J Pharmacol Sci 2008, 107:226–230.CrossRefPubMed
31.
go back to reference Nakajima K, Shimojo M, Hamanoue M, Ishiura S, Sugita H, Kohsaka S: Identification of elastase as a secretory protease from cultured rat microglia. J Neurochem 1992, 58:1401–1408.CrossRefPubMed Nakajima K, Shimojo M, Hamanoue M, Ishiura S, Sugita H, Kohsaka S: Identification of elastase as a secretory protease from cultured rat microglia. J Neurochem 1992, 58:1401–1408.CrossRefPubMed
32.
go back to reference Kohl A, Dehghani F, Korf HW, Hailer NP: The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 2003, 181:1–11.CrossRefPubMed Kohl A, Dehghani F, Korf HW, Hailer NP: The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 2003, 181:1–11.CrossRefPubMed
33.
go back to reference Abe K, Matsuki N: Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 2000, 38:325–329.CrossRefPubMed Abe K, Matsuki N: Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 2000, 38:325–329.CrossRefPubMed
34.
go back to reference Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sévigny J, Battastini AM, Robson SC: Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 2006, 138:421–432.CrossRefPubMed Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sévigny J, Battastini AM, Robson SC: Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 2006, 138:421–432.CrossRefPubMed
35.
go back to reference Li J, Ramenaden ER, Peng J, Koito H, Volpe JJ, Rosenberg PA: Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci 2008, 28:5321–5330.CrossRefPubMedPubMedCentral Li J, Ramenaden ER, Peng J, Koito H, Volpe JJ, Rosenberg PA: Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci 2008, 28:5321–5330.CrossRefPubMedPubMedCentral
36.
go back to reference Bal-Price A, Brown GC: Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 2001, 21:6480–6491.PubMed Bal-Price A, Brown GC: Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 2001, 21:6480–6491.PubMed
37.
go back to reference Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T: The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002, 22:2478–2486.PubMed Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T: The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002, 22:2478–2486.PubMed
38.
go back to reference Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD: Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 2005, 49:360–374.CrossRefPubMed Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD: Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 2005, 49:360–374.CrossRefPubMed
39.
go back to reference Tilleux S, Hermans E: Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 2007, 85:2059–2070.CrossRefPubMed Tilleux S, Hermans E: Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 2007, 85:2059–2070.CrossRefPubMed
40.
go back to reference Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA: Longuemare MC: Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 1997, 17:932–940.PubMed Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA: Longuemare MC: Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 1997, 17:932–940.PubMed
41.
go back to reference Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, Pietrini G: The GLT1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000, 75:1076–1084.CrossRefPubMed Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, Pietrini G: The GLT1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000, 75:1076–1084.CrossRefPubMed
42.
go back to reference Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A: The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 2000, 37:163–170.CrossRefPubMed Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A: The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 2000, 37:163–170.CrossRefPubMed
43.
go back to reference Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D: Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 2003, 17:2106–2118.CrossRefPubMed Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D: Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 2003, 17:2106–2118.CrossRefPubMed
44.
go back to reference González-Mejia ME, Morales M, Hernández-Kelly LC, Zepeda RC, Bernabé A, Ortega A: Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6K. Neuroscience 2006, 141:1389–1398.CrossRefPubMed González-Mejia ME, Morales M, Hernández-Kelly LC, Zepeda RC, Bernabé A, Ortega A: Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6K. Neuroscience 2006, 141:1389–1398.CrossRefPubMed
45.
go back to reference Zepeda RC, Barrera I, Castelán F, Suárez-Pozos E, Melgarejo Y, González-Mejia E, Hernández-Kelly LC, López-Bayghen E, Aguilera J, Ortega A: Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells. Neurochem Int 2009, 55:282–287.CrossRefPubMed Zepeda RC, Barrera I, Castelán F, Suárez-Pozos E, Melgarejo Y, González-Mejia E, Hernández-Kelly LC, López-Bayghen E, Aguilera J, Ortega A: Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells. Neurochem Int 2009, 55:282–287.CrossRefPubMed
46.
go back to reference Stanbrough M, Rowen DW, Magasanik B: Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci USA 1995, 92:9450–9454.CrossRefPubMedPubMedCentral Stanbrough M, Rowen DW, Magasanik B: Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci USA 1995, 92:9450–9454.CrossRefPubMedPubMedCentral
Metadata
Title
L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation
Authors
Junpei Takaki
Koki Fujimori
Marie Miura
Takeshi Suzuki
Yuko Sekino
Kaoru Sato
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-275

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue