Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

Authors: Boonrat Chantong, Denise V Kratschmar, Lyubomir G Nashev, Zoltan Balazs, Alex Odermatt

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB) pathway in murine BV-2 microglial cells were studied.

Methods

BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6), tumor necrosis factor receptor 2 (TNFR2), and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays.

Results

GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α) expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF-κB translocation Cay-10512. Moreover, an increased expression of TNFR2 was observed upon treatment with 11-dehydrocorticosterone and aldosterone, which was reversed by 11β-HSD1 inhibitors and/or spironolactone and Cay-10512.

Conclusions

A tightly coordinated GR and MR activity regulates the NF-κB pathway and the control of inflammatory mediators in microglia cells. The balance of GR and MR activity is locally modulated by the action of 11β-HSD1, which is upregulated by pro-inflammatory mediators and may represent an important feedback mechanism involved in resolution of inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, Shimomura I: Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun 2012, 419:182–187.CrossRefPubMed Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, Shimomura I: Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun 2012, 419:182–187.CrossRefPubMed
2.
go back to reference Ishii-Yonemoto T, Masuzaki H, Yasue S, Okada S, Kozuka C, Tanaka T, Noguchi M, Tomita T, Fujikura J, Yamamoto Y, Ebihara K, Hosoda K, Nakao K: Glucocorticoid reamplification within cells intensifies NF-kappaB and MAPK signaling and reinforces inflammation in activated preadipocytes. Am J Physiol Endocrinol Metab 2010, 298:E930-E940.CrossRefPubMed Ishii-Yonemoto T, Masuzaki H, Yasue S, Okada S, Kozuka C, Tanaka T, Noguchi M, Tomita T, Fujikura J, Yamamoto Y, Ebihara K, Hosoda K, Nakao K: Glucocorticoid reamplification within cells intensifies NF-kappaB and MAPK signaling and reinforces inflammation in activated preadipocytes. Am J Physiol Endocrinol Metab 2010, 298:E930-E940.CrossRefPubMed
3.
go back to reference Marzolla V, Armani A, Zennaro MC, Cinti F, Mammi C, Fabbri A, Rosano GM, Caprio M: The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol 2012, 350:281–288.CrossRefPubMed Marzolla V, Armani A, Zennaro MC, Cinti F, Mammi C, Fabbri A, Rosano GM, Caprio M: The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol 2012, 350:281–288.CrossRefPubMed
4.
go back to reference De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M: Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998, 19:269–301.PubMed De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M: Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998, 19:269–301.PubMed
5.
go back to reference De Kloet ER, Veldhuis HD, Wagenaars JL, Bergink EW: Relative binding affinity of steroids for the corticosterone receptor system in rat hippocampus. J Steroid Biochem Mol Biol 1984, 21:173–178.CrossRef De Kloet ER, Veldhuis HD, Wagenaars JL, Bergink EW: Relative binding affinity of steroids for the corticosterone receptor system in rat hippocampus. J Steroid Biochem Mol Biol 1984, 21:173–178.CrossRef
6.
go back to reference Reul JM, de Kloet ER: Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985, 117:2505–2511.CrossRefPubMed Reul JM, de Kloet ER: Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985, 117:2505–2511.CrossRefPubMed
7.
go back to reference Reul JM, van den Bosch FR, de Kloet ER: Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 1987, 115:459–467.CrossRefPubMed Reul JM, van den Bosch FR, de Kloet ER: Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 1987, 115:459–467.CrossRefPubMed
8.
go back to reference Sapolsky RM, Romero LM, Munck AU: How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000, 21:55–89.PubMed Sapolsky RM, Romero LM, Munck AU: How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000, 21:55–89.PubMed
9.
go back to reference Funder JW: Mineralocorticoid receptors in the central nervous system. J Steroid Biochem Mol Biol 1996, 56:179–183.CrossRefPubMed Funder JW: Mineralocorticoid receptors in the central nervous system. J Steroid Biochem Mol Biol 1996, 56:179–183.CrossRefPubMed
10.
go back to reference Cintra A, Bhatnagar M, Chadi G, Tinner B, Lindberg J, Gustafsson JA, Agnati LF, Fuxe K: Glial and neuronal glucocorticoid receptor immunoreactive cell populations in developing, adult, and aging brain. Ann N Y Acad Sci U S A 1994, 746:42–61.CrossRef Cintra A, Bhatnagar M, Chadi G, Tinner B, Lindberg J, Gustafsson JA, Agnati LF, Fuxe K: Glial and neuronal glucocorticoid receptor immunoreactive cell populations in developing, adult, and aging brain. Ann N Y Acad Sci U S A 1994, 746:42–61.CrossRef
11.
go back to reference Odermatt A, Kratschmar DV: Tissue-specific modulation of mineralocorticoid receptor function by 11beta-hydroxysteroid dehydrogenases: an overview. Mol Cell Endocrinol 2012, 350:168–186.CrossRefPubMed Odermatt A, Kratschmar DV: Tissue-specific modulation of mineralocorticoid receptor function by 11beta-hydroxysteroid dehydrogenases: an overview. Mol Cell Endocrinol 2012, 350:168–186.CrossRefPubMed
12.
go back to reference Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C: Localisation of 11 beta-hydroxysteroid dehydrogenase–tissue specific protector of the mineralocorticoid receptor. Lancet 1988, 2:986–989.CrossRefPubMed Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C: Localisation of 11 beta-hydroxysteroid dehydrogenase–tissue specific protector of the mineralocorticoid receptor. Lancet 1988, 2:986–989.CrossRefPubMed
13.
go back to reference Funder JW, Pearce PT, Smith R, Smith AI: Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988, 242:583–585.CrossRefPubMed Funder JW, Pearce PT, Smith R, Smith AI: Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988, 242:583–585.CrossRefPubMed
14.
go back to reference Odermatt A, Arnold P, Frey FJ: The intracellular localization of the mineralocorticoid receptor is regulated by 11beta-hydroxysteroid dehydrogenase type 2. J Biol Chem 2001, 276:28484–28492.CrossRefPubMed Odermatt A, Arnold P, Frey FJ: The intracellular localization of the mineralocorticoid receptor is regulated by 11beta-hydroxysteroid dehydrogenase type 2. J Biol Chem 2001, 276:28484–28492.CrossRefPubMed
15.
go back to reference Ferrari P: The role of 11beta-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta 2010, 1802:1178–1187.CrossRefPubMed Ferrari P: The role of 11beta-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta 2010, 1802:1178–1187.CrossRefPubMed
16.
go back to reference Frey FJ, Odermatt A, Frey BM: Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens 2004, 13:451–458.CrossRefPubMed Frey FJ, Odermatt A, Frey BM: Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens 2004, 13:451–458.CrossRefPubMed
17.
go back to reference Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC: Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995, 10:394–399.CrossRefPubMed Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC: Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995, 10:394–399.CrossRefPubMed
18.
go back to reference Tischner D, Reichardt HM: Glucocorticoids in the control of neuroinflammation. Mol Cell Endocrinol 2007, 275:62–70.CrossRefPubMed Tischner D, Reichardt HM: Glucocorticoids in the control of neuroinflammation. Mol Cell Endocrinol 2007, 275:62–70.CrossRefPubMed
20.
go back to reference de Kloet ER, Van Acker SA, Sibug RM, Oitzl MS, Meijer OC, Rahmouni K, de Jong W: Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int 2000, 57:1329–1336.CrossRefPubMed de Kloet ER, Van Acker SA, Sibug RM, Oitzl MS, Meijer OC, Rahmouni K, de Jong W: Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int 2000, 57:1329–1336.CrossRefPubMed
21.
go back to reference Hugin-Flores ME, Steimer T, Aubert ML, Schulz P: Mineralo- and glucocorticoid receptor mrnas are differently regulated by corticosterone in the rat hippocampus and anterior pituitary. Neuroendocrinology 2004, 79:174–184.CrossRefPubMed Hugin-Flores ME, Steimer T, Aubert ML, Schulz P: Mineralo- and glucocorticoid receptor mrnas are differently regulated by corticosterone in the rat hippocampus and anterior pituitary. Neuroendocrinology 2004, 79:174–184.CrossRefPubMed
22.
go back to reference Groeneweg FL, Karst H, de Kloet ER, Joels M: Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol 2012, 350:299–309.CrossRefPubMed Groeneweg FL, Karst H, de Kloet ER, Joels M: Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol 2012, 350:299–309.CrossRefPubMed
23.
go back to reference Gottfried-Blackmore A, Sierra A, McEwen BS, Ge R, Bulloch K: Microglia express functional 11 beta-hydroxysteroid dehydrogenase type 1. Glia 2010, 58:1257–1266.PubMed Gottfried-Blackmore A, Sierra A, McEwen BS, Ge R, Bulloch K: Microglia express functional 11 beta-hydroxysteroid dehydrogenase type 1. Glia 2010, 58:1257–1266.PubMed
24.
go back to reference Funder JW: Aldosterone and mineralocorticoid receptors: a personal reflection. Mol Cell Endocrinol 2012, 350:146–150.CrossRefPubMed Funder JW: Aldosterone and mineralocorticoid receptors: a personal reflection. Mol Cell Endocrinol 2012, 350:146–150.CrossRefPubMed
25.
go back to reference Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M: The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 2009, 26:83–94.PubMed Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M: The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 2009, 26:83–94.PubMed
26.
go back to reference Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H: An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 1992, 31:616–621.CrossRefPubMed Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H: An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 1992, 31:616–621.CrossRefPubMed
27.
go back to reference Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F: Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 1990, 27:229–237.CrossRefPubMed Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F: Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 1990, 27:229–237.CrossRefPubMed
28.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 2001, 25:402–408.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 2001, 25:402–408.CrossRefPubMed
29.
go back to reference Ding GJ, Fischer PA, Boltz RC, Schmidt JA, Colaianne JJ, Gough A, Rubin RA, Miller DK: Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system. J Biol Chem 1998, 273:28897–28905.CrossRefPubMed Ding GJ, Fischer PA, Boltz RC, Schmidt JA, Colaianne JJ, Gough A, Rubin RA, Miller DK: Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system. J Biol Chem 1998, 273:28897–28905.CrossRefPubMed
30.
go back to reference Odermatt A, Atanasov AG: Mineralocorticoid receptors: emerging complexity and functional diversity. Steroids 2009, 74:163–171.CrossRefPubMed Odermatt A, Atanasov AG: Mineralocorticoid receptors: emerging complexity and functional diversity. Steroids 2009, 74:163–171.CrossRefPubMed
31.
go back to reference Fiers W, Beyaert R, Brouckaert P, Everaerdt B, Haegeman C, Suffys P, Tavernier J, Vanhaesebroeck B: TNF: its potential as an antitumour agent. Dev Biol Stand 1988, 69:143–151.PubMed Fiers W, Beyaert R, Brouckaert P, Everaerdt B, Haegeman C, Suffys P, Tavernier J, Vanhaesebroeck B: TNF: its potential as an antitumour agent. Dev Biol Stand 1988, 69:143–151.PubMed
32.
go back to reference Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, Odermatt A: The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem 2006, 49:3454–3466.CrossRefPubMed Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, Odermatt A: The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem 2006, 49:3454–3466.CrossRefPubMed
33.
go back to reference Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, Le Grand CB, Li Z, Metzger JM, Mundt SS, Noonan H, Nunes CN, Olson SH, Pikounis B, Ren N, Robertson N, Schaeffer JM, Shah K, Springer MS, Strack AM, Strowski M, Wu K, Wu T, Xiao J, Zhang BB, Wright SD, Thieringer R: 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 2005, 202:517–527.CrossRefPubMedPubMedCentral Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, Le Grand CB, Li Z, Metzger JM, Mundt SS, Noonan H, Nunes CN, Olson SH, Pikounis B, Ren N, Robertson N, Schaeffer JM, Shah K, Springer MS, Strack AM, Strowski M, Wu K, Wu T, Xiao J, Zhang BB, Wright SD, Thieringer R: 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 2005, 202:517–527.CrossRefPubMedPubMedCentral
34.
go back to reference Arampatzis S, Kadereit B, Schuster D, Balazs Z, Schweizer RA, Frey FJ, Langer T, Odermatt A: Comparative enzymology of 11beta-hydroxysteroid dehydrogenase type 1 from six species. J Mol Endocrinol 2005, 35:89–101.CrossRefPubMed Arampatzis S, Kadereit B, Schuster D, Balazs Z, Schweizer RA, Frey FJ, Langer T, Odermatt A: Comparative enzymology of 11beta-hydroxysteroid dehydrogenase type 1 from six species. J Mol Endocrinol 2005, 35:89–101.CrossRefPubMed
35.
go back to reference Rebuffat AG, Tam S, Nawrocki AR, Baker ME, Frey BM, Frey FJ, Odermatt A: The 11-ketosteroid 11-ketodexamethasone is a glucocorticoid receptor agonist. Mol Cell Endocrinol 2004, 214:27–37.CrossRefPubMed Rebuffat AG, Tam S, Nawrocki AR, Baker ME, Frey BM, Frey FJ, Odermatt A: The 11-ketosteroid 11-ketodexamethasone is a glucocorticoid receptor agonist. Mol Cell Endocrinol 2004, 214:27–37.CrossRefPubMed
36.
go back to reference Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, Columba-Cabezas S, Arico E, Aloisi F, Agresti C: Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci 2010, 45:234–244.CrossRefPubMed Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, Columba-Cabezas S, Arico E, Aloisi F, Agresti C: Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci 2010, 45:234–244.CrossRefPubMed
37.
go back to reference Chrousos GP: The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New Engl J Med 1995, 332:1351–1362.CrossRefPubMed Chrousos GP: The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New Engl J Med 1995, 332:1351–1362.CrossRefPubMed
38.
go back to reference Van Bogaert T, Vandevyver S, Dejager L, Van Hauwermeiren F, Pinheiro I, Petta I, Engblom D, Kleyman A, Schutz G, Tuckermann J, Libert C: Tumor necrosis factor inhibits glucocorticoid receptor function in mice: a strong signal toward lethal shock. J Biol Chem 2011, 286:26555–26567.CrossRefPubMedPubMedCentral Van Bogaert T, Vandevyver S, Dejager L, Van Hauwermeiren F, Pinheiro I, Petta I, Engblom D, Kleyman A, Schutz G, Tuckermann J, Libert C: Tumor necrosis factor inhibits glucocorticoid receptor function in mice: a strong signal toward lethal shock. J Biol Chem 2011, 286:26555–26567.CrossRefPubMedPubMedCentral
39.
go back to reference Van Bogaert T, De Bosscher K, Libert C: Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine Growth F R 2010, 21:275–286.CrossRef Van Bogaert T, De Bosscher K, Libert C: Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine Growth F R 2010, 21:275–286.CrossRef
40.
go back to reference Barnes PJ, Adcock IM: Glucocorticoid resistance in inflammatory diseases. Lancet 2009, 373:1905–1917.CrossRefPubMed Barnes PJ, Adcock IM: Glucocorticoid resistance in inflammatory diseases. Lancet 2009, 373:1905–1917.CrossRefPubMed
41.
go back to reference Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009, 8:382–397.CrossRefPubMed Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009, 8:382–397.CrossRefPubMed
42.
go back to reference Hirsch EC, Vyas S, Hunot S: Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012, 1:S210-S212.CrossRef Hirsch EC, Vyas S, Hunot S: Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012, 1:S210-S212.CrossRef
43.
go back to reference Ros-Bernal F, Hunot S, Herrero MT, Parnadeau S, Corvol JC, Lu L, Alvarez-Fischer D, Carrillo-de Sauvage MA, Saurini F, Coussieu C, Kinugawa K, Prigent A, Hoglinger G, Hamon M, Tronche F, Hirsch EC, Vyas S: Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci USA 2011, 108:6632–6637.CrossRefPubMedPubMedCentral Ros-Bernal F, Hunot S, Herrero MT, Parnadeau S, Corvol JC, Lu L, Alvarez-Fischer D, Carrillo-de Sauvage MA, Saurini F, Coussieu C, Kinugawa K, Prigent A, Hoglinger G, Hamon M, Tronche F, Hirsch EC, Vyas S: Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci USA 2011, 108:6632–6637.CrossRefPubMedPubMedCentral
Metadata
Title
Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells
Authors
Boonrat Chantong
Denise V Kratschmar
Lyubomir G Nashev
Zoltan Balazs
Alex Odermatt
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-260

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue