Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2011

Open Access 01-12-2011 | Research

CCL2/MCP-1 modulation of microglial activation and proliferation

Authors: Ara E Hinojosa, Borja Garcia-Bueno, Juan C Leza, Jose LM Madrigal

Published in: Journal of Neuroinflammation | Issue 1/2011

Login to get access

Abstract

Background

Monocyte chemoattractant protein (CCL2/MCP-1) is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia.

Methods

Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU). Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium.

Results

MCP-1 treatment (50 ng/ml, 24 h) did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α), either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2) expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS.

Conclusion

These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be necessary to cause the changes that result in the neuronal damage commonly observed in situations where MCP-1 levels are elevated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005, 6: 1182-1190. 10.1038/ni1275.CrossRefPubMed Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005, 6: 1182-1190. 10.1038/ni1275.CrossRefPubMed
2.
go back to reference Rot A, von Andrian UH: Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004, 22: 891-928. 10.1146/annurev.immunol.22.012703.104543.CrossRefPubMed Rot A, von Andrian UH: Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004, 22: 891-928. 10.1146/annurev.immunol.22.012703.104543.CrossRefPubMed
3.
4.
5.
go back to reference Ransohoff RM, Perry VH: Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009, 27: 119-145. 10.1146/annurev.immunol.021908.132528.CrossRefPubMed Ransohoff RM, Perry VH: Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009, 27: 119-145. 10.1146/annurev.immunol.021908.132528.CrossRefPubMed
6.
go back to reference Streit WJ, Xue QS: Life and death of microglia. J Neuroimmune Pharmacol. 2009, 4: 371-379. 10.1007/s11481-009-9163-5.CrossRefPubMed Streit WJ, Xue QS: Life and death of microglia. J Neuroimmune Pharmacol. 2009, 4: 371-379. 10.1007/s11481-009-9163-5.CrossRefPubMed
7.
go back to reference Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009, 29: 3974-3980. 10.1523/JNEUROSCI.4363-08.2009.CrossRefPubMed Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009, 29: 3974-3980. 10.1523/JNEUROSCI.4363-08.2009.CrossRefPubMed
8.
go back to reference Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005, 76: 77-98. 10.1016/j.pneurobio.2005.06.004.CrossRefPubMed Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005, 76: 77-98. 10.1016/j.pneurobio.2005.06.004.CrossRefPubMed
9.
go back to reference Ambrosini E, Aloisi F: Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res. 2004, 29: 1017-1038.CrossRefPubMed Ambrosini E, Aloisi F: Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res. 2004, 29: 1017-1038.CrossRefPubMed
10.
go back to reference Yadav A, Saini V, Arora S: MCP-1:chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010, 411: 1570-1579. 10.1016/j.cca.2010.07.006.CrossRefPubMed Yadav A, Saini V, Arora S: MCP-1:chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010, 411: 1570-1579. 10.1016/j.cca.2010.07.006.CrossRefPubMed
11.
go back to reference Bruno V, Copani A, Besong G, Scoto G, Nicoletti F: Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur J Pharmacol. 2000, 399: 117-121. 10.1016/S0014-2999(00)00367-8.CrossRefPubMed Bruno V, Copani A, Besong G, Scoto G, Nicoletti F: Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur J Pharmacol. 2000, 399: 117-121. 10.1016/S0014-2999(00)00367-8.CrossRefPubMed
12.
go back to reference El KJ, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007, 13: 432-438. 10.1038/nm1555.CrossRef El KJ, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007, 13: 432-438. 10.1038/nm1555.CrossRef
13.
go back to reference Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW: MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem. 2003, 85: 1299-1311. 10.1046/j.1471-4159.2003.01775.x.CrossRefPubMed Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW: MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem. 2003, 85: 1299-1311. 10.1046/j.1471-4159.2003.01775.x.CrossRefPubMed
14.
go back to reference Guyon A, Skrzydelski D, De G, Rovere C, Conductier G, Trocello JM, et al: Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience. 2009, 162: 1072-1080. 10.1016/j.neuroscience.2009.05.048.CrossRefPubMed Guyon A, Skrzydelski D, De G, Rovere C, Conductier G, Trocello JM, et al: Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience. 2009, 162: 1072-1080. 10.1016/j.neuroscience.2009.05.048.CrossRefPubMed
15.
go back to reference Kalehua AN, Nagel JE, Whelchel LM, Gides JJ, Pyle RS, Smith RJ, et al: Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp Cell Res. 2004, 297: 197-211. 10.1016/j.yexcr.2004.02.031.CrossRefPubMed Kalehua AN, Nagel JE, Whelchel LM, Gides JJ, Pyle RS, Smith RJ, et al: Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp Cell Res. 2004, 297: 197-211. 10.1016/j.yexcr.2004.02.031.CrossRefPubMed
16.
go back to reference Omata N, Yasutomi M, Yamada A, Iwasaki H, Mayumi M, Ohshima Y: Monocyte chemoattractant protein-1 selectively inhibits the acquisition of CD40 ligand-dependent IL-12-producing capacity of monocyte-derived dendritic cells and modulates Th1 immune response. J Immunol. 2002, 169: 4861-4866.CrossRefPubMed Omata N, Yasutomi M, Yamada A, Iwasaki H, Mayumi M, Ohshima Y: Monocyte chemoattractant protein-1 selectively inhibits the acquisition of CD40 ligand-dependent IL-12-producing capacity of monocyte-derived dendritic cells and modulates Th1 immune response. J Immunol. 2002, 169: 4861-4866.CrossRefPubMed
17.
go back to reference Melik-Parsadaniantz S, Rostene W: Chemokines and neuromodulation. J Neuroimmunol. 2008, 198: 62-68. 10.1016/j.jneuroim.2008.04.022.CrossRefPubMed Melik-Parsadaniantz S, Rostene W: Chemokines and neuromodulation. J Neuroimmunol. 2008, 198: 62-68. 10.1016/j.jneuroim.2008.04.022.CrossRefPubMed
18.
go back to reference Vairano M, Dello RC, Pozzoli G, Battaglia A, Scambia G, Tringali G, et al: Erythropoietin exerts anti-apoptotic effects on rat microglial cells in vitro. Eur J Neurosci. 2002, 16: 584-592. 10.1046/j.1460-9568.2002.02125.x.CrossRefPubMed Vairano M, Dello RC, Pozzoli G, Battaglia A, Scambia G, Tringali G, et al: Erythropoietin exerts anti-apoptotic effects on rat microglial cells in vitro. Eur J Neurosci. 2002, 16: 584-592. 10.1046/j.1460-9568.2002.02125.x.CrossRefPubMed
19.
go back to reference Madrigal JL, Feinstein DL, Dello RC: Norepinephrine protects cortical neurons against microglial-induced cell death. J Neurosci Res. 2005, 81: 390-396. 10.1002/jnr.20481.CrossRefPubMed Madrigal JL, Feinstein DL, Dello RC: Norepinephrine protects cortical neurons against microglial-induced cell death. J Neurosci Res. 2005, 81: 390-396. 10.1002/jnr.20481.CrossRefPubMed
20.
go back to reference Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G: Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol. 2001, 168: 32-46. 10.1006/exnr.2000.7575.CrossRefPubMed Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G: Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol. 2001, 168: 32-46. 10.1006/exnr.2000.7575.CrossRefPubMed
21.
go back to reference McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM: Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. 2002, 100: 1160-1167.PubMed McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM: Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. 2002, 100: 1160-1167.PubMed
22.
go back to reference Yao Y, Tsirka SE: The C terminus of mouse monocyte chemoattractant protein 1 (MCP1) mediates MCP1 dimerization while blocking its chemotactic potency. J Biol Chem. 2010, 285: 31509-31516. 10.1074/jbc.M110.124891.PubMedCentralCrossRefPubMed Yao Y, Tsirka SE: The C terminus of mouse monocyte chemoattractant protein 1 (MCP1) mediates MCP1 dimerization while blocking its chemotactic potency. J Biol Chem. 2010, 285: 31509-31516. 10.1074/jbc.M110.124891.PubMedCentralCrossRefPubMed
23.
go back to reference Belmadani A, Tran PB, Ren D, Miller RJ: Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci. 2006, 26: 3182-3191. 10.1523/JNEUROSCI.0156-06.2006.PubMedCentralCrossRefPubMed Belmadani A, Tran PB, Ren D, Miller RJ: Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci. 2006, 26: 3182-3191. 10.1523/JNEUROSCI.0156-06.2006.PubMedCentralCrossRefPubMed
24.
go back to reference Zhou Y, Tang H, Liu J, Dong J, Xiong H: Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices. J Neurochem. 2011, 116: 406-414. 10.1111/j.1471-4159.2010.07121.x.PubMedCentralCrossRefPubMed Zhou Y, Tang H, Liu J, Dong J, Xiong H: Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices. J Neurochem. 2011, 116: 406-414. 10.1111/j.1471-4159.2010.07121.x.PubMedCentralCrossRefPubMed
26.
go back to reference Thompson WL, Karpus WJ, Van Eldik LJ: MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation. 2008, 5: 35-10.1186/1742-2094-5-35.PubMedCentralCrossRefPubMed Thompson WL, Karpus WJ, Van Eldik LJ: MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation. 2008, 5: 35-10.1186/1742-2094-5-35.PubMedCentralCrossRefPubMed
27.
go back to reference Deshmane SL, Kremlev S, Amini S, Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009, 29: 313-326. 10.1089/jir.2008.0027.PubMedCentralCrossRefPubMed Deshmane SL, Kremlev S, Amini S, Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009, 29: 313-326. 10.1089/jir.2008.0027.PubMedCentralCrossRefPubMed
28.
go back to reference Rezaie P, Trillo-Pazos G, Everall IP, Male DK: Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS. Glia. 2002, 37: 64-75. 10.1002/glia.1128.CrossRefPubMed Rezaie P, Trillo-Pazos G, Everall IP, Male DK: Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS. Glia. 2002, 37: 64-75. 10.1002/glia.1128.CrossRefPubMed
29.
go back to reference Madrigal JL, Leza JC, Polak P, Kalinin S, Feinstein DL: Astrocyte-derived MCP-1 mediates neuroprotective effects of noradrenaline. J Neurosci. 2009, 29: 263-267. 10.1523/JNEUROSCI.4926-08.2009.CrossRefPubMed Madrigal JL, Leza JC, Polak P, Kalinin S, Feinstein DL: Astrocyte-derived MCP-1 mediates neuroprotective effects of noradrenaline. J Neurosci. 2009, 29: 263-267. 10.1523/JNEUROSCI.4926-08.2009.CrossRefPubMed
30.
go back to reference Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, et al: Neuronal MCP-1 Mediates Microglia Recruitment and Neurodegeneration Induced by the Mild Impairment of Oxidative Metabolism. Brain Pathol. 2010 Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, et al: Neuronal MCP-1 Mediates Microglia Recruitment and Neurodegeneration Induced by the Mild Impairment of Oxidative Metabolism. Brain Pathol. 2010
31.
go back to reference Thacker MA, Clark AK, Bishop T, Grist J, Yip PK, Moon LD, et al: CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain. 2009, 13: 263-272. 10.1016/j.ejpain.2008.04.017.CrossRefPubMed Thacker MA, Clark AK, Bishop T, Grist J, Yip PK, Moon LD, et al: CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain. 2009, 13: 263-272. 10.1016/j.ejpain.2008.04.017.CrossRefPubMed
32.
go back to reference Muessel MJ, Klein RM, Wilson AM, Berman NE: Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. Brain Res Mol Brain Res. 2002, 103: 12-27.CrossRefPubMed Muessel MJ, Klein RM, Wilson AM, Berman NE: Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. Brain Res Mol Brain Res. 2002, 103: 12-27.CrossRefPubMed
33.
go back to reference Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J: Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia. 2004, 45: 96-104. 10.1002/glia.10306.CrossRefPubMed Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J: Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia. 2004, 45: 96-104. 10.1002/glia.10306.CrossRefPubMed
34.
go back to reference Kauppinen TM, Swanson RA: Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol. 2005, 174: 2288-2296.CrossRefPubMed Kauppinen TM, Swanson RA: Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol. 2005, 174: 2288-2296.CrossRefPubMed
35.
go back to reference Mander P, Brown GC: Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation. 2005, 2: 20-10.1186/1742-2094-2-20.PubMedCentralCrossRefPubMed Mander P, Brown GC: Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation. 2005, 2: 20-10.1186/1742-2094-2-20.PubMedCentralCrossRefPubMed
36.
go back to reference Graeber MB, Streit WJ: Microglia: biology and pathology. Acta Neuropathol. 2010, 119: 89-105. 10.1007/s00401-009-0622-0.CrossRefPubMed Graeber MB, Streit WJ: Microglia: biology and pathology. Acta Neuropathol. 2010, 119: 89-105. 10.1007/s00401-009-0622-0.CrossRefPubMed
37.
go back to reference Shimojo M, Nakajima K, Takei N, Hamanoue M, Kohsaka S: Production of basic fibroblast growth factor in cultured rat brain microglia. Neurosci Lett. 1991, 123: 229-231. 10.1016/0304-3940(91)90937-O.CrossRefPubMed Shimojo M, Nakajima K, Takei N, Hamanoue M, Kohsaka S: Production of basic fibroblast growth factor in cultured rat brain microglia. Neurosci Lett. 1991, 123: 229-231. 10.1016/0304-3940(91)90937-O.CrossRefPubMed
38.
go back to reference Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007, 27: 2596-2605. 10.1523/JNEUROSCI.5360-06.2007.CrossRefPubMed Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007, 27: 2596-2605. 10.1523/JNEUROSCI.5360-06.2007.CrossRefPubMed
39.
go back to reference Morrison RS, Sharma A, de VJ, Bradshaw RA: Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc Natl Acad Sci USA. 1986, 83: 7537-7541. 10.1073/pnas.83.19.7537.PubMedCentralCrossRefPubMed Morrison RS, Sharma A, de VJ, Bradshaw RA: Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc Natl Acad Sci USA. 1986, 83: 7537-7541. 10.1073/pnas.83.19.7537.PubMedCentralCrossRefPubMed
40.
go back to reference Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R: Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci USA. 1986, 83: 3012-3016. 10.1073/pnas.83.9.3012.PubMedCentralCrossRefPubMed Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R: Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci USA. 1986, 83: 3012-3016. 10.1073/pnas.83.9.3012.PubMedCentralCrossRefPubMed
41.
go back to reference Aberg ND, Brywe KG, Isgaard J: Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. ScientificWorldJournal. 2006, 6: 53-80.CrossRefPubMed Aberg ND, Brywe KG, Isgaard J: Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. ScientificWorldJournal. 2006, 6: 53-80.CrossRefPubMed
42.
go back to reference O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia. 2002, 39: 85-97. 10.1002/glia.10081.CrossRefPubMed O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia. 2002, 39: 85-97. 10.1002/glia.10081.CrossRefPubMed
43.
go back to reference Perez-Martin M, Cifuentes M, Grondona JM, Lopez-Avalos MD, Gomez-Pinedo U, Garcia-Verdugo JM, et al: IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci. 2010, 31: 1533-1548.PubMed Perez-Martin M, Cifuentes M, Grondona JM, Lopez-Avalos MD, Gomez-Pinedo U, Garcia-Verdugo JM, et al: IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci. 2010, 31: 1533-1548.PubMed
44.
go back to reference Chiu K, Yeung SC, So KF, Chang RC: Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol. 2010, 7: 61-68. 10.1038/cmi.2009.110.PubMedCentralCrossRefPubMed Chiu K, Yeung SC, So KF, Chang RC: Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol. 2010, 7: 61-68. 10.1038/cmi.2009.110.PubMedCentralCrossRefPubMed
45.
go back to reference Zhang J, Shi XQ, Echeverry S, Mogil JS, De KY, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 2007, 27: 12396-12406. 10.1523/JNEUROSCI.3016-07.2007.CrossRefPubMed Zhang J, Shi XQ, Echeverry S, Mogil JS, De KY, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 2007, 27: 12396-12406. 10.1523/JNEUROSCI.3016-07.2007.CrossRefPubMed
46.
go back to reference Kalinin S, Gavrilyuk V, Polak PE, Vasser R, Zhao J, Heneka MT, et al: Noradrenaline deficiency in brain increases beta-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiol Aging. 2007, 28: 1206-1214. 10.1016/j.neurobiolaging.2006.06.003.CrossRefPubMed Kalinin S, Gavrilyuk V, Polak PE, Vasser R, Zhao J, Heneka MT, et al: Noradrenaline deficiency in brain increases beta-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiol Aging. 2007, 28: 1206-1214. 10.1016/j.neurobiolaging.2006.06.003.CrossRefPubMed
47.
go back to reference Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, et al: Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006, 26: 1343-1354. 10.1523/JNEUROSCI.4236-05.2006.CrossRefPubMed Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, et al: Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006, 26: 1343-1354. 10.1523/JNEUROSCI.4236-05.2006.CrossRefPubMed
48.
go back to reference Madrigal JL, Dello RC, Gavrilyuk V, Feinstein DL: Effects of noradrenaline on neuronal NOS2 expression and viability. Antioxid Redox Signal. 2006, 8: 885-892. 10.1089/ars.2006.8.885.CrossRefPubMed Madrigal JL, Dello RC, Gavrilyuk V, Feinstein DL: Effects of noradrenaline on neuronal NOS2 expression and viability. Antioxid Redox Signal. 2006, 8: 885-892. 10.1089/ars.2006.8.885.CrossRefPubMed
49.
go back to reference Bondareff W, Mountjoy CQ, Roth M: Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet. 1981, 1: 783-784.CrossRefPubMed Bondareff W, Mountjoy CQ, Roth M: Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet. 1981, 1: 783-784.CrossRefPubMed
50.
go back to reference Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A: Noradrenaline in Parkinson's disease: from disease progression to current therapeutics. Curr Med Chem. 2007, 14: 2330-2334. 10.2174/092986707781745550.CrossRefPubMed Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A: Noradrenaline in Parkinson's disease: from disease progression to current therapeutics. Curr Med Chem. 2007, 14: 2330-2334. 10.2174/092986707781745550.CrossRefPubMed
51.
go back to reference Polak PE, Kalinin S, Feinstein DL: Locus coeruleus damage and noradrenaline reductions in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain. 2011, 134: 665-677. 10.1093/brain/awq362.PubMedCentralCrossRefPubMed Polak PE, Kalinin S, Feinstein DL: Locus coeruleus damage and noradrenaline reductions in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain. 2011, 134: 665-677. 10.1093/brain/awq362.PubMedCentralCrossRefPubMed
Metadata
Title
CCL2/MCP-1 modulation of microglial activation and proliferation
Authors
Ara E Hinojosa
Borja Garcia-Bueno
Juan C Leza
Jose LM Madrigal
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2011
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-8-77

Other articles of this Issue 1/2011

Journal of Neuroinflammation 1/2011 Go to the issue