Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Research

CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system

Authors: Marius Krauthausen, Simon Saxe, Julian Zimmermann, Michael Emrich, Michael T Heneka, Marcus Müller

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Background

The functional state of glial cells, like astrocytes and microglia, critically modulates the course of neuroinflammatory and neurodegenerative diseases and can have both detrimental and beneficial effects. Glial cell function is tightly controlled by cellular interactions in which cytokines are important messengers. Recent studies provide evidence that in particular chemokines are important modulators of glial cell function. During the course of CNS diseases like multiple sclerosis or Alzheimer’s disease, and in the corresponding animal models, the chemokines CXCL9 and CXCL10 are abundantly expressed at sites of glial activation, arguing for an important role of these chemokines and their corresponding receptor CXCR3 in glial activation. To clarify the role of this chemokine system in glial cell activation, we characterized the impact of CXCR3 on glial activation in a model of toxic demyelination in which glial activation without a prominent influx of hematogenous cells is prototypical.

Methods

We investigated the impact of CXCR3 on cuprizone-induced demyelination, comparing CXCR3-deficient mice with wild type controls. The clinical course during cuprizone feeding was documented for five weeks and for the subsequent four days withdrawal of the cuprizone diet (5.5 weeks). Glial activation was characterized using histological, histomorphometric and phenotypic analysis. Molecular analysis for (de)myelination and neuroinflammation was applied to characterize the effect of cuprizone on CXCR3-deficient mice and control animals.

Results

CXCR3-deficient mice displayed a milder clinical course during cuprizone feeding and a more rapid body weight recovery after offset of diet. In the CNS, CXCR3 deficiency significantly attenuated the accumulation and activation of microglia and astrocytes. Moreover, a deficiency of CXCR3 reduced the expression of the microglial activation markers CD45 and CD11b. Compared to controls, we observed a vast reduction of RNA levels for proinflammatory cytokines and chemokines like Ccl2, Cxcl10, Tnf and Il6 within the CNS of cuprizone-treated mice. Lastly, CXCR3 deficiency had no major effects on the course of demyelination during cuprizone feeding.

Conclusions

The CXCR3 chemokine system is critically involved in the intrinsic glial activation during cuprizone-induced demyelination, which significantly modulates the distribution of glial cells and the local cytokine milieu.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nedergaard M, Ransom B, Goldman SA: New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 2003, 26: 523-530.CrossRefPubMed Nedergaard M, Ransom B, Goldman SA: New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 2003, 26: 523-530.CrossRefPubMed
2.
go back to reference Perea G, Navarrete M, Araque A: Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009, 32: 421.CrossRefPubMed Perea G, Navarrete M, Araque A: Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009, 32: 421.CrossRefPubMed
3.
go back to reference Obara M, Szeliga M, Albrecht J: Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int. 2008, 52: 905-919.CrossRefPubMed Obara M, Szeliga M, Albrecht J: Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int. 2008, 52: 905-919.CrossRefPubMed
4.
go back to reference Simard M, Nedergaard M: The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 2004, 129: 877-896.CrossRefPubMed Simard M, Nedergaard M: The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 2004, 129: 877-896.CrossRefPubMed
6.
go back to reference Tremblay M-È, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The role of microglia in the healthy brain. J Neurosci. 2011, 31: 16064-16069.CrossRefPubMed Tremblay M-È, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The role of microglia in the healthy brain. J Neurosci. 2011, 31: 16064-16069.CrossRefPubMed
7.
go back to reference Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007, 28: 138-145.CrossRefPubMed Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007, 28: 138-145.CrossRefPubMed
9.
go back to reference Cao L, He C: Polarization of macrophages and microglia in inflammatory demyelination. Neurosci Bull. 2013, 29: 189-198.CrossRefPubMed Cao L, He C: Polarization of macrophages and microglia in inflammatory demyelination. Neurosci Bull. 2013, 29: 189-198.CrossRefPubMed
10.
go back to reference Ransohoff RM, Perry VH: Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009, 27: 119-145.CrossRefPubMed Ransohoff RM, Perry VH: Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009, 27: 119-145.CrossRefPubMed
11.
go back to reference Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP: Complement components of the innate immune system in health and disease in the CNS. Immunopharmacol. 2000, 49: 171-186.CrossRef Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP: Complement components of the innate immune system in health and disease in the CNS. Immunopharmacol. 2000, 49: 171-186.CrossRef
12.
go back to reference Bowman CC, Rasley A, Tranguch SL, Marriott I: Cultured astrocytes express toll-like receptors for bacterial products. Glia. 2003, 43: 281-291.CrossRefPubMed Bowman CC, Rasley A, Tranguch SL, Marriott I: Cultured astrocytes express toll-like receptors for bacterial products. Glia. 2003, 43: 281-291.CrossRefPubMed
13.
go back to reference Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD: Differential activation of astrocytes by innate and adaptive immune stimuli. Glia. 2005, 49: 360-374.CrossRefPubMed Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD: Differential activation of astrocytes by innate and adaptive immune stimuli. Glia. 2005, 49: 360-374.CrossRefPubMed
15.
go back to reference Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004, 173: 3916-3924.CrossRefPubMed Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004, 173: 3916-3924.CrossRefPubMed
16.
go back to reference Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC: Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002, 40: 195-205.CrossRefPubMed Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC: Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002, 40: 195-205.CrossRefPubMed
17.
go back to reference Van Weering HRJ, Boddeke HWGM, Vinet J, Brouwer N, de Haas AH, van Rooijen N, Thomsen AR, Biber KPH: CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus. 2011, 21: 220-232.CrossRefPubMed Van Weering HRJ, Boddeke HWGM, Vinet J, Brouwer N, de Haas AH, van Rooijen N, Thomsen AR, Biber KPH: CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus. 2011, 21: 220-232.CrossRefPubMed
18.
go back to reference Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C, Kristensson K, Büscher P, Finsen B, Masocha W: Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis. 2009, 200: 1556-1565.CrossRefPubMed Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C, Kristensson K, Büscher P, Finsen B, Masocha W: Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis. 2009, 200: 1556-1565.CrossRefPubMed
19.
go back to reference Hofer MJ, Carter SL, Müller M, Campbell IL: Unaltered neurological disease and mortality in CXCR3-deficient mice infected intracranially with lymphocytic choriomeningitis virus-Armstrong. Viral Immunol. 2008, 21: 425-433.PubMedCentralCrossRefPubMed Hofer MJ, Carter SL, Müller M, Campbell IL: Unaltered neurological disease and mortality in CXCR3-deficient mice infected intracranially with lymphocytic choriomeningitis virus-Armstrong. Viral Immunol. 2008, 21: 425-433.PubMedCentralCrossRefPubMed
20.
go back to reference Müller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJC, Campbell IL: CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol. 2007, 179: 2774-2786.CrossRefPubMed Müller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJC, Campbell IL: CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol. 2007, 179: 2774-2786.CrossRefPubMed
21.
go back to reference Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS: Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. 2005, 79: 11457-11466.PubMedCentralCrossRefPubMed Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS: Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. 2005, 79: 11457-11466.PubMedCentralCrossRefPubMed
22.
go back to reference Tsunoda I, Lane TE, Blackett J, Fujinami RS: Distinct roles for IP-10/CXCL10 in three animal models, Theiler’s virus infection, EAE, and MHV infection, for multiple sclerosis: implication of differing roles for IP-10. Mult Scler. 2004, 10: 26-34.CrossRefPubMed Tsunoda I, Lane TE, Blackett J, Fujinami RS: Distinct roles for IP-10/CXCL10 in three animal models, Theiler’s virus infection, EAE, and MHV infection, for multiple sclerosis: implication of differing roles for IP-10. Mult Scler. 2004, 10: 26-34.CrossRefPubMed
23.
go back to reference Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HWGM, Nitsch R, Kettenmann H: CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci. 2004, 24: 8500-8509.CrossRefPubMed Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HWGM, Nitsch R, Kettenmann H: CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci. 2004, 24: 8500-8509.CrossRefPubMed
24.
go back to reference Rupprecht TA, Koedel U, Muhlberger B, Wilske B, Fontana A, Pfister H-W: CXCL11 is involved in leucocyte recruitment to the central nervous system in neuroborreliosis. J Neurol. 2005, 252: 820-823.CrossRefPubMed Rupprecht TA, Koedel U, Muhlberger B, Wilske B, Fontana A, Pfister H-W: CXCL11 is involved in leucocyte recruitment to the central nervous system in neuroborreliosis. J Neurol. 2005, 252: 820-823.CrossRefPubMed
25.
go back to reference Stiles LN, Hardison JL, Schaumburg CS, Whitman LM, Lane TE: T cell antiviral effector function is not dependent on CXCL10 following murine coronavirus infection. J Immunol. 2006, 177: 8372-8380.CrossRefPubMed Stiles LN, Hardison JL, Schaumburg CS, Whitman LM, Lane TE: T cell antiviral effector function is not dependent on CXCL10 following murine coronavirus infection. J Immunol. 2006, 177: 8372-8380.CrossRefPubMed
26.
go back to reference Campanella GSV, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA, Colvin RA, Luster AD: Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci U S A. 2008, 105: 4814-4819.PubMedCentralCrossRefPubMed Campanella GSV, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA, Colvin RA, Luster AD: Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci U S A. 2008, 105: 4814-4819.PubMedCentralCrossRefPubMed
27.
go back to reference Luster AD, Unkeless JC, Ravetch JV: Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature. 1985, 315: 672-676.CrossRefPubMed Luster AD, Unkeless JC, Ravetch JV: Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature. 1985, 315: 672-676.CrossRefPubMed
28.
go back to reference Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K: Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med. 1998, 187: 2009-2021.PubMedCentralCrossRefPubMed Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K: Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med. 1998, 187: 2009-2021.PubMedCentralCrossRefPubMed
29.
go back to reference Choi K, Ni L, Jonakait GM: Fas ligation and tumor necrosis factor alpha activation of murine astrocytes promote heat shock factor-1 activation and heat shock protein expression leading to chemokine induction and cell survival. J Neurochem. 2011, 116: 438-448.CrossRefPubMed Choi K, Ni L, Jonakait GM: Fas ligation and tumor necrosis factor alpha activation of murine astrocytes promote heat shock factor-1 activation and heat shock protein expression leading to chemokine induction and cell survival. J Neurochem. 2011, 116: 438-448.CrossRefPubMed
30.
go back to reference Carter SL, Müller M, Manders PM, Campbell IL: Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia. 2007, 55: 1728-1739.CrossRefPubMed Carter SL, Müller M, Manders PM, Campbell IL: Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia. 2007, 55: 1728-1739.CrossRefPubMed
31.
go back to reference Loetscher M, Loetscher P, Brass N, Meese E, Moser B: Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol. 1998, 28: 3696-3705.CrossRefPubMed Loetscher M, Loetscher P, Brass N, Meese E, Moser B: Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol. 1998, 28: 3696-3705.CrossRefPubMed
32.
go back to reference Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA: Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem. 1998, 273: 18288-18291.CrossRefPubMed Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA: Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem. 1998, 273: 18288-18291.CrossRefPubMed
33.
go back to reference Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, Detheux M, Parmentier M, Durinx C, Lambeir A-M, Neyts J, Liekens S, Maudgal PC, Billiau A, Van Damme J: Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood. 2001, 98: 3554-3561.CrossRefPubMed Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, Detheux M, Parmentier M, Durinx C, Lambeir A-M, Neyts J, Liekens S, Maudgal PC, Billiau A, Van Damme J: Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood. 2001, 98: 3554-3561.CrossRefPubMed
34.
go back to reference Colvin RA, Campanella GSV, Sun J, Luster AD: Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem. 2004, 279: 30219-30227.CrossRefPubMed Colvin RA, Campanella GSV, Sun J, Luster AD: Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem. 2004, 279: 30219-30227.CrossRefPubMed
35.
go back to reference Colvin RA, Campanella GSV, Manice LA, Luster AD: CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol. 2006, 26: 5838-5849.PubMedCentralCrossRefPubMed Colvin RA, Campanella GSV, Manice LA, Luster AD: CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol. 2006, 26: 5838-5849.PubMedCentralCrossRefPubMed
36.
go back to reference Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D: The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995, 270: 27348-27357.CrossRefPubMed Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D: The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995, 270: 27348-27357.CrossRefPubMed
37.
go back to reference Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP: CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005, 16: 593-609.CrossRefPubMed Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP: CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005, 16: 593-609.CrossRefPubMed
38.
go back to reference Zlotnik A, Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity. 2000, 12: 121-127.CrossRefPubMed Zlotnik A, Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity. 2000, 12: 121-127.CrossRefPubMed
39.
go back to reference Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, Gentilini P, Marra F: Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem. 2001, 276: 9945-9954.CrossRefPubMed Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, Gentilini P, Marra F: Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem. 2001, 276: 9945-9954.CrossRefPubMed
40.
go back to reference Kim TS, Kang BY, Lee MH, Choe YK, Hwang SY: Inhibition of interleukin-12 production by auranofin, an anti-rheumatic gold compound, deviates CD4(+) T cells from the Th1 to the Th2 pathway. Br J Pharmacol. 2001, 134: 571-578.PubMedCentralCrossRefPubMed Kim TS, Kang BY, Lee MH, Choe YK, Hwang SY: Inhibition of interleukin-12 production by auranofin, an anti-rheumatic gold compound, deviates CD4(+) T cells from the Th1 to the Th2 pathway. Br J Pharmacol. 2001, 134: 571-578.PubMedCentralCrossRefPubMed
41.
go back to reference Biber K, Dijkstra I, Trebst C, De Groot CJA, Ransohoff RM, Boddeke H: Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience. 2002, 112: 487-497.CrossRefPubMed Biber K, Dijkstra I, Trebst C, De Groot CJA, Ransohoff RM, Boddeke H: Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience. 2002, 112: 487-497.CrossRefPubMed
42.
go back to reference De Jong EK, de Haas AH, Brouwer N, van Weering HRJ, Hensens M, Bechmann I, Pratley P, Wesseling E, Boddeke HWGM, Biber K: Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3. J Neurochem. 2008, 105: 1726-1736.CrossRefPubMed De Jong EK, de Haas AH, Brouwer N, van Weering HRJ, Hensens M, Bechmann I, Pratley P, Wesseling E, Boddeke HWGM, Biber K: Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3. J Neurochem. 2008, 105: 1726-1736.CrossRefPubMed
43.
go back to reference Flynn G: Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol. 2003, 136: 84-93.CrossRefPubMed Flynn G: Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol. 2003, 136: 84-93.CrossRefPubMed
44.
go back to reference Lepej SZ, Rode OD, Jeren T, Vince A, Remenar A, Barsić B: Increased expression of CXCR3 and CCR5 on memory CD4+ T-cells migrating into the cerebrospinal fluid of patients with neuroborreliosis: the role of CXCL10 and CXCL11. J Neuroimmunol. 2005, 163: 128-134.CrossRefPubMed Lepej SZ, Rode OD, Jeren T, Vince A, Remenar A, Barsić B: Increased expression of CXCR3 and CCR5 on memory CD4+ T-cells migrating into the cerebrospinal fluid of patients with neuroborreliosis: the role of CXCL10 and CXCL11. J Neuroimmunol. 2005, 163: 128-134.CrossRefPubMed
45.
go back to reference Lahrtz F, Piali L, Nadal D, Pfister HW, Spanaus KS, Baggiolini M, Fontana A: Chemotactic activity on mononuclear cells in the cerebrospinal fluid of patients with viral meningitis is mediated by interferon-gamma inducible protein-10 and monocyte chemotactic protein-1. Eur J Immunol. 1997, 27: 2484-2489.CrossRefPubMed Lahrtz F, Piali L, Nadal D, Pfister HW, Spanaus KS, Baggiolini M, Fontana A: Chemotactic activity on mononuclear cells in the cerebrospinal fluid of patients with viral meningitis is mediated by interferon-gamma inducible protein-10 and monocyte chemotactic protein-1. Eur J Immunol. 1997, 27: 2484-2489.CrossRefPubMed
46.
go back to reference Kolb SA, Sporer B, Lahrtz F, Koedel U, Pfister HW, Fontana A: Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol. 1999, 93: 172-181.CrossRefPubMed Kolb SA, Sporer B, Lahrtz F, Koedel U, Pfister HW, Fontana A: Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol. 1999, 93: 172-181.CrossRefPubMed
47.
go back to reference Cinque P, Bestetti A, Marenzi R, Sala S, Gisslen M, Hagberg L, Price RW: Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection. J Neuroimmunol. 2005, 168: 154-163.CrossRefPubMed Cinque P, Bestetti A, Marenzi R, Sala S, Gisslen M, Hagberg L, Price RW: Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection. J Neuroimmunol. 2005, 168: 154-163.CrossRefPubMed
48.
go back to reference Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, Griffin JW, Griffin DE: Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol. 1993, 33: 576-582.CrossRefPubMed Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, Griffin JW, Griffin DE: Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol. 1993, 33: 576-582.CrossRefPubMed
49.
go back to reference Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999, 103: 807-815.PubMedCentralCrossRefPubMed Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999, 103: 807-815.PubMedCentralCrossRefPubMed
51.
go back to reference Sørensen TL, Trebst C, Kivisäkk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM, Sellebjerg F: Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol. 2002, 127: 59-68.CrossRefPubMed Sørensen TL, Trebst C, Kivisäkk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM, Sellebjerg F: Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol. 2002, 127: 59-68.CrossRefPubMed
52.
go back to reference Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT: Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J Neuroimmunol. 2000, 108: 227-235.CrossRefPubMed Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT: Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J Neuroimmunol. 2000, 108: 227-235.CrossRefPubMed
53.
go back to reference Riemer C, Schultz J, Burwinkel M, Schwarz A, Mok SWF, Gültner S, Bamme T, Norley S, van Landeghem F, Lu B, Gerard C, Baier M: Accelerated prion replication in, but prolonged survival times of, prion-infected CXCR3-/-mice. J Virol. 2008, 82: 12464-12471.PubMedCentralCrossRefPubMed Riemer C, Schultz J, Burwinkel M, Schwarz A, Mok SWF, Gültner S, Bamme T, Norley S, van Landeghem F, Lu B, Gerard C, Baier M: Accelerated prion replication in, but prolonged survival times of, prion-infected CXCR3-/-mice. J Virol. 2008, 82: 12464-12471.PubMedCentralCrossRefPubMed
54.
go back to reference Kipp M, Clarner T, Dang J, Copray S, Beyer C: The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009, 118: 723-736.CrossRefPubMed Kipp M, Clarner T, Dang J, Copray S, Beyer C: The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009, 118: 723-736.CrossRefPubMed
55.
go back to reference Torkildsen O, Brunborg LA, Myhr K-M, Bø L: The cuprizone model for demyelination. Acta Neurol Scand Suppl C. 2008, 188: 72-76.CrossRef Torkildsen O, Brunborg LA, Myhr K-M, Bø L: The cuprizone model for demyelination. Acta Neurol Scand Suppl C. 2008, 188: 72-76.CrossRef
56.
go back to reference McMahon EJ, Suzuki K, Matsushima GK: Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood–brain barrier. J Neuroimmunol. 2002, 130: 32-45.CrossRefPubMed McMahon EJ, Suzuki K, Matsushima GK: Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood–brain barrier. J Neuroimmunol. 2002, 130: 32-45.CrossRefPubMed
57.
go back to reference Carlton WW: Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci. 1967, 6: 11-19.CrossRefPubMed Carlton WW: Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci. 1967, 6: 11-19.CrossRefPubMed
58.
go back to reference Carlton WW: Response of mice to the chelating agents sodium diethyldithiocarbamate, α-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharm. 1966, 8: 512-521.CrossRef Carlton WW: Response of mice to the chelating agents sodium diethyldithiocarbamate, α-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharm. 1966, 8: 512-521.CrossRef
59.
go back to reference Remington LT, Babcock AA, Zehntner SP, Owens T: Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol. 2007, 170: 1713-1724.PubMedCentralCrossRefPubMed Remington LT, Babcock AA, Zehntner SP, Owens T: Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol. 2007, 170: 1713-1724.PubMedCentralCrossRefPubMed
60.
go back to reference Koutsoudaki PN, Skripuletz T, Gudi V, Moharregh-Khiabani D, Hildebrandt H, Trebst C, Stangel M: Demyelination of the hippocampus is prominent in the cuprizone model. Neurosci Lett. 2009, 451: 83-88.CrossRefPubMed Koutsoudaki PN, Skripuletz T, Gudi V, Moharregh-Khiabani D, Hildebrandt H, Trebst C, Stangel M: Demyelination of the hippocampus is prominent in the cuprizone model. Neurosci Lett. 2009, 451: 83-88.CrossRefPubMed
61.
go back to reference Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, Trebst C, Stangel M: Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009, 1283: 127-138.CrossRefPubMed Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, Trebst C, Stangel M: Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009, 1283: 127-138.CrossRefPubMed
62.
go back to reference Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, Trebst C, Stangel M: Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol. 2008, 172: 1053-1061.PubMedCentralCrossRefPubMed Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, Trebst C, Stangel M: Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol. 2008, 172: 1053-1061.PubMedCentralCrossRefPubMed
63.
go back to reference Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgärtner W, Stangel M: Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain. 2013, 136: 147-167.CrossRefPubMed Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgärtner W, Stangel M: Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain. 2013, 136: 147-167.CrossRefPubMed
64.
go back to reference Boztug K, Carson MJ, Pham-Mitchell N, Asensio VC, DeMartino J, Campbell IL: Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. J Immunol. 2002, 169: 1505-1515.CrossRefPubMed Boztug K, Carson MJ, Pham-Mitchell N, Asensio VC, DeMartino J, Campbell IL: Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. J Immunol. 2002, 169: 1505-1515.CrossRefPubMed
66.
go back to reference Tirotta E, Ransohoff RM, Lane TE: CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis. Glia. 2011, 59: 1518-1528.CrossRefPubMed Tirotta E, Ransohoff RM, Lane TE: CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis. Glia. 2011, 59: 1518-1528.CrossRefPubMed
67.
go back to reference Omari KM, John GR, Sealfon SC, Raine CS: CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain. 2005, 128: 1003-1015.CrossRefPubMed Omari KM, John GR, Sealfon SC, Raine CS: CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain. 2005, 128: 1003-1015.CrossRefPubMed
68.
go back to reference Islam MS, Tatsumi K, Okuda H, Shiosaka S, Wanaka A: Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem Int. 2009, 54: 192-198.CrossRefPubMed Islam MS, Tatsumi K, Okuda H, Shiosaka S, Wanaka A: Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem Int. 2009, 54: 192-198.CrossRefPubMed
69.
go back to reference Franklin RJM, Kotter MR: The biology of CNS remyelination: the key to therapeutic advances. J Neurol. 2008, 255 (Suppl 1): 19-25.CrossRefPubMed Franklin RJM, Kotter MR: The biology of CNS remyelination: the key to therapeutic advances. J Neurol. 2008, 255 (Suppl 1): 19-25.CrossRefPubMed
Metadata
Title
CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system
Authors
Marius Krauthausen
Simon Saxe
Julian Zimmermann
Michael Emrich
Michael T Heneka
Marcus Müller
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-11-109

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue