Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Research

Inflammatory cascades mediate synapse elimination in spinal cord compression

Authors: Morito Takano, Soya Kawabata, Yuji Komaki, Shinsuke Shibata, Keigo Hikishima, Yoshiaki Toyama, Hideyuki Okano, Masaya Nakamura

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Background

Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice.

Methods

Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests.

Results

Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals.

Conclusions

We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bohlman HH, Emery SE: The pathophysiology of cervical spondylosis and myelopathy. Spine (Phila Pa 1976). 1988, 13: 843-846. 10.1097/00007632-198807000-00025.CrossRef Bohlman HH, Emery SE: The pathophysiology of cervical spondylosis and myelopathy. Spine (Phila Pa 1976). 1988, 13: 843-846. 10.1097/00007632-198807000-00025.CrossRef
2.
go back to reference Fehlings MG, Skaf G: A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976). 1998, 23: 2730-2737. 10.1097/00007632-199812150-00012.CrossRef Fehlings MG, Skaf G: A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976). 1998, 23: 2730-2737. 10.1097/00007632-199812150-00012.CrossRef
3.
go back to reference Kameyama T, Hashizume Y, Ando T, Takahashi A, Yanagi T, Mizuno J: Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament. Brain. 1995, 118: 263-278. 10.1093/brain/118.1.263.CrossRefPubMed Kameyama T, Hashizume Y, Ando T, Takahashi A, Yanagi T, Mizuno J: Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament. Brain. 1995, 118: 263-278. 10.1093/brain/118.1.263.CrossRefPubMed
4.
go back to reference Mizuno J, Nakagawa H, Chang HS, Hashizume Y: Postmortem study of the spinal cord showing snake-eyes appearance due to damage by ossification of the posterior longitudinal ligament and kyphotic deformity. Spinal Cord. 2005, 43: 503-507. 10.1038/sj.sc.3101727.CrossRefPubMed Mizuno J, Nakagawa H, Chang HS, Hashizume Y: Postmortem study of the spinal cord showing snake-eyes appearance due to damage by ossification of the posterior longitudinal ligament and kyphotic deformity. Spinal Cord. 2005, 43: 503-507. 10.1038/sj.sc.3101727.CrossRefPubMed
5.
go back to reference Baba H, Imura S, Kawahara N, Nagata S, Tomita K: Osteoplastic laminoplasty for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop. 1995, 19: 40-45.PubMed Baba H, Imura S, Kawahara N, Nagata S, Tomita K: Osteoplastic laminoplasty for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop. 1995, 19: 40-45.PubMed
6.
go back to reference Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H: Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 1: clinical results and limitations of laminoplasty. Spine (Phila Pa 1976). 2007, 32: 647-653. 10.1097/01.brs.0000257560.91147.86.CrossRef Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H: Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 1: clinical results and limitations of laminoplasty. Spine (Phila Pa 1976). 2007, 32: 647-653. 10.1097/01.brs.0000257560.91147.86.CrossRef
7.
go back to reference Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S: Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet. 1998, 19: 271-273. 10.1038/956.CrossRefPubMed Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S: Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet. 1998, 19: 271-273. 10.1038/956.CrossRefPubMed
8.
go back to reference Uchida K, Baba H, Maezawa Y, Kubota C: Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976). 2002, 27: 480-486. 10.1097/00007632-200203010-00008.CrossRef Uchida K, Baba H, Maezawa Y, Kubota C: Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976). 2002, 27: 480-486. 10.1097/00007632-200203010-00008.CrossRef
9.
go back to reference Yamaura I, Yone K, Nakahara S, Nagamine T, Baba H, Uchida K, Komiya S: Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression. Spine (Phila Pa 1976). 2002, 27: 21-26. 10.1097/00007632-200201010-00008.CrossRef Yamaura I, Yone K, Nakahara S, Nagamine T, Baba H, Uchida K, Komiya S: Mechanism of destructive pathologic changes in the spinal cord under chronic mechanical compression. Spine (Phila Pa 1976). 2002, 27: 21-26. 10.1097/00007632-200201010-00008.CrossRef
10.
go back to reference Takano M, Komaki Y, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Okano H, Nakamura M: In vivo tracing of neural tracts in tiptoe walking Yoshimura mice by diffusion tensor tractography. Spine (Phila Pa 1976). 2013, 38: E66-E72. 10.1097/BRS.0b013e31827aacc2.CrossRef Takano M, Komaki Y, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Okano H, Nakamura M: In vivo tracing of neural tracts in tiptoe walking Yoshimura mice by diffusion tensor tractography. Spine (Phila Pa 1976). 2013, 38: E66-E72. 10.1097/BRS.0b013e31827aacc2.CrossRef
11.
go back to reference Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG: Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis. 2009, 33: 149-163. 10.1016/j.nbd.2008.09.024.CrossRefPubMed Yu WR, Baptiste DC, Liu T, Odrobina E, Stanisz GJ, Fehlings MG: Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol Dis. 2009, 33: 149-163. 10.1016/j.nbd.2008.09.024.CrossRefPubMed
12.
go back to reference Yato Y, Fujimura Y, Nakamura M, Watanabe M, Yabe Y: Decreased choline acetyltransferase activity in the murine spinal cord motoneurons under chronic mechanical compression. Spinal Cord. 1997, 35: 729-734. 10.1038/sj.sc.3100529.CrossRefPubMed Yato Y, Fujimura Y, Nakamura M, Watanabe M, Yabe Y: Decreased choline acetyltransferase activity in the murine spinal cord motoneurons under chronic mechanical compression. Spinal Cord. 1997, 35: 729-734. 10.1038/sj.sc.3100529.CrossRefPubMed
13.
go back to reference Yu WR, Liu T, Kiehl TR, Fehlings MG: Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011, 134: 1277-1292. 10.1093/brain/awr054.CrossRefPubMed Yu WR, Liu T, Kiehl TR, Fehlings MG: Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011, 134: 1277-1292. 10.1093/brain/awr054.CrossRefPubMed
14.
go back to reference Uchida K, Baba H, Maezawa Y, Furukawa S, Furusawa N, Imura S: Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotropic factors. J Neurol. 1998, 245: 781-793. 10.1007/s004150050287.CrossRefPubMed Uchida K, Baba H, Maezawa Y, Furukawa S, Furusawa N, Imura S: Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotropic factors. J Neurol. 1998, 245: 781-793. 10.1007/s004150050287.CrossRefPubMed
15.
go back to reference Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M: Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed. 2009, 22: 834-842. 10.1002/nbm.1396.CrossRefPubMed Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M: Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed. 2009, 22: 834-842. 10.1002/nbm.1396.CrossRefPubMed
16.
go back to reference Bosshard SC, Baltes C, Wyss MT, Mueggler T, Weber B, Rudin M: Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI. Pain. 2010, 151: 655-663. 10.1016/j.pain.2010.08.025.CrossRefPubMed Bosshard SC, Baltes C, Wyss MT, Mueggler T, Weber B, Rudin M: Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI. Pain. 2010, 151: 655-663. 10.1016/j.pain.2010.08.025.CrossRefPubMed
17.
go back to reference Baba H, Furusawa N, Fukuda M, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K: Potential role of streptozotocin in enhancing ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur J Histochem. 1997, 41: 191-202.PubMed Baba H, Furusawa N, Fukuda M, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K: Potential role of streptozotocin in enhancing ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur J Histochem. 1997, 41: 191-202.PubMed
18.
go back to reference Takano M, Hikishima K, Fujiyoshi K, Shibata S, Yasuda A, Konomi T, Hayashi A, Baba H, Honke K, Toyama Y, Okano H, Nakamura M: MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One. 2012, 7: e52904-10.1371/journal.pone.0052904.PubMedCentralCrossRefPubMed Takano M, Hikishima K, Fujiyoshi K, Shibata S, Yasuda A, Konomi T, Hayashi A, Baba H, Honke K, Toyama Y, Okano H, Nakamura M: MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One. 2012, 7: e52904-10.1371/journal.pone.0052904.PubMedCentralCrossRefPubMed
19.
go back to reference Ogura H, Matsumoto M, Mikoshiba K: Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav Brain Res. 2001, 122: 215-219. 10.1016/S0166-4328(01)00187-5.CrossRefPubMed Ogura H, Matsumoto M, Mikoshiba K: Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav Brain Res. 2001, 122: 215-219. 10.1016/S0166-4328(01)00187-5.CrossRefPubMed
20.
go back to reference Mistry DS, Chen Y, Sen GL: Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell. 2012, 11: 127-135. 10.1016/j.stem.2012.04.022.PubMedCentralCrossRefPubMed Mistry DS, Chen Y, Sen GL: Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell. 2012, 11: 127-135. 10.1016/j.stem.2012.04.022.PubMedCentralCrossRefPubMed
21.
go back to reference Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG: Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007, 102: 37-50. 10.1111/j.1471-4159.2007.04524.x.CrossRefPubMed Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG: Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007, 102: 37-50. 10.1111/j.1471-4159.2007.04524.x.CrossRefPubMed
22.
go back to reference Long HQ, Li GS, Hu Y, Wen CY, Xie WH: HIF-1alpha/VEGF signaling pathway may play a dual role in secondary pathogenesis of cervical myelopathy. Med Hypotheses. 2012, 79: 82-84. 10.1016/j.mehy.2012.04.006.CrossRefPubMed Long HQ, Li GS, Hu Y, Wen CY, Xie WH: HIF-1alpha/VEGF signaling pathway may play a dual role in secondary pathogenesis of cervical myelopathy. Med Hypotheses. 2012, 79: 82-84. 10.1016/j.mehy.2012.04.006.CrossRefPubMed
23.
go back to reference Kele J, Simplicio N, Ferri AL, Mira H, Guillemot F, Arenas E, Ang SL: Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development. 2006, 133: 495-505. 10.1242/dev.02223.CrossRefPubMed Kele J, Simplicio N, Ferri AL, Mira H, Guillemot F, Arenas E, Ang SL: Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development. 2006, 133: 495-505. 10.1242/dev.02223.CrossRefPubMed
24.
go back to reference Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T: Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy. 2011, 7: 1462-1471. 10.4161/auto.7.12.17892.PubMedCentralCrossRefPubMed Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T: Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy. 2011, 7: 1462-1471. 10.4161/auto.7.12.17892.PubMedCentralCrossRefPubMed
25.
go back to reference Bai T, Chen CC, Lau LF: Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. 2010, 184: 3223-3232. 10.4049/jimmunol.0902792.PubMedCentralCrossRefPubMed Bai T, Chen CC, Lau LF: Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. 2010, 184: 3223-3232. 10.4049/jimmunol.0902792.PubMedCentralCrossRefPubMed
26.
go back to reference Chaqour B, Goppelt-Struebe M: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006, 273: 3639-3649.CrossRefPubMed Chaqour B, Goppelt-Struebe M: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006, 273: 3639-3649.CrossRefPubMed
27.
go back to reference Kivela R, Kyrolainen H, Selanne H, Komi PV, Kainulainen H, Vihko V: A single bout of exercise with high mechanical loading induces the expression of Cyr61/CCN1 and CTGF/CCN2 in human skeletal muscle. J Appl Physiol. 2007, 103: 1395-1401. 10.1152/japplphysiol.00531.2007.CrossRefPubMed Kivela R, Kyrolainen H, Selanne H, Komi PV, Kainulainen H, Vihko V: A single bout of exercise with high mechanical loading induces the expression of Cyr61/CCN1 and CTGF/CCN2 in human skeletal muscle. J Appl Physiol. 2007, 103: 1395-1401. 10.1152/japplphysiol.00531.2007.CrossRefPubMed
28.
go back to reference Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA: The classical complement cascade mediates CNS synapse elimination. Cell. 2007, 131: 1164-1178. 10.1016/j.cell.2007.10.036.CrossRefPubMed Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA: The classical complement cascade mediates CNS synapse elimination. Cell. 2007, 131: 1164-1178. 10.1016/j.cell.2007.10.036.CrossRefPubMed
29.
go back to reference Zhang Z, Pinto AM, Wan L, Wang W, Berg MG, Oliva I, Singh LN, Dengler C, Wei Z, Dreyfuss G: Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2013, 110: 19348-19353. 10.1073/pnas.1319280110.PubMedCentralCrossRefPubMed Zhang Z, Pinto AM, Wan L, Wang W, Berg MG, Oliva I, Singh LN, Dengler C, Wei Z, Dreyfuss G: Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2013, 110: 19348-19353. 10.1073/pnas.1319280110.PubMedCentralCrossRefPubMed
30.
go back to reference Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, Kim L, Tsai HH, Huang EJ, Rowitch DH, Berns DS, Tenner AJ, Shamloo M, Barres BA: A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci. 2013, 33: 13460-13474. 10.1523/JNEUROSCI.1333-13.2013.PubMedCentralCrossRefPubMed Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, Kim L, Tsai HH, Huang EJ, Rowitch DH, Berns DS, Tenner AJ, Shamloo M, Barres BA: A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci. 2013, 33: 13460-13474. 10.1523/JNEUROSCI.1333-13.2013.PubMedCentralCrossRefPubMed
31.
go back to reference Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, Okada K, Sakai T, Hashimoto A, Hara Y, Shimizu I, Zhu W, Toko H, Katada A, Akazawa H, Oka T, Lee JK, Minamino T, Nagai T, Walsh K, Kikuchi A, Matsumoto M, Botto M, Shiojima I, Komuro I: Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell. 2012, 149: 1298-1313. 10.1016/j.cell.2012.03.047.PubMedCentralCrossRefPubMed Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, Okada K, Sakai T, Hashimoto A, Hara Y, Shimizu I, Zhu W, Toko H, Katada A, Akazawa H, Oka T, Lee JK, Minamino T, Nagai T, Walsh K, Kikuchi A, Matsumoto M, Botto M, Shiojima I, Komuro I: Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell. 2012, 149: 1298-1313. 10.1016/j.cell.2012.03.047.PubMedCentralCrossRefPubMed
32.
33.
go back to reference Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25: 677-686. 10.1016/j.it.2004.09.015.CrossRefPubMed Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25: 677-686. 10.1016/j.it.2004.09.015.CrossRefPubMed
34.
go back to reference Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009, 29: 13435-13444. 10.1523/JNEUROSCI.3257-09.2009.PubMedCentralCrossRefPubMed Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009, 29: 13435-13444. 10.1523/JNEUROSCI.3257-09.2009.PubMedCentralCrossRefPubMed
35.
go back to reference Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H: Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation. 2012, 9: 40-10.1186/1742-2094-9-40.PubMedCentralCrossRefPubMed Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H: Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation. 2012, 9: 40-10.1186/1742-2094-9-40.PubMedCentralCrossRefPubMed
36.
37.
go back to reference Aszodi A, Legate KR, Nakchbandi I, Fassler R: What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol. 2006, 22: 591-621. 10.1146/annurev.cellbio.22.010305.104258.CrossRefPubMed Aszodi A, Legate KR, Nakchbandi I, Fassler R: What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol. 2006, 22: 591-621. 10.1146/annurev.cellbio.22.010305.104258.CrossRefPubMed
38.
go back to reference Jun JI, Lau LF: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010, 12: 676-685. 10.1038/ncb2070.PubMedCentralCrossRefPubMed Jun JI, Lau LF: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010, 12: 676-685. 10.1038/ncb2070.PubMedCentralCrossRefPubMed
39.
go back to reference Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z: Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol. 2012, 58: 511-522.CrossRefPubMed Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z: Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol. 2012, 58: 511-522.CrossRefPubMed
41.
go back to reference Stephan AH, Barres BA, Stevens B: The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012, 35: 369-389. 10.1146/annurev-neuro-061010-113810.CrossRefPubMed Stephan AH, Barres BA, Stevens B: The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012, 35: 369-389. 10.1146/annurev-neuro-061010-113810.CrossRefPubMed
42.
go back to reference Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP, Anderson AJ: Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci. 2008, 28: 13876-13888. 10.1523/JNEUROSCI.2823-08.2008.PubMedCentralCrossRefPubMed Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP, Anderson AJ: Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci. 2008, 28: 13876-13888. 10.1523/JNEUROSCI.2823-08.2008.PubMedCentralCrossRefPubMed
43.
go back to reference Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM: Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005, 102: 17734-17738. 10.1073/pnas.0508440102.PubMedCentralCrossRefPubMed Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM: Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A. 2005, 102: 17734-17738. 10.1073/pnas.0508440102.PubMedCentralCrossRefPubMed
44.
go back to reference Amoh Y, Li L, Katsuoka K, Hoffman RM: Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle. 1865–1869, 2008: 7. Amoh Y, Li L, Katsuoka K, Hoffman RM: Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle. 1865–1869, 2008: 7.
45.
go back to reference Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM: Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005, 102: 5530-5534. 10.1073/pnas.0501263102.PubMedCentralCrossRefPubMed Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM: Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005, 102: 5530-5534. 10.1073/pnas.0501263102.PubMedCentralCrossRefPubMed
46.
go back to reference Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM: Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003, 100: 9958-9961. 10.1073/pnas.1733025100.PubMedCentralCrossRefPubMed Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM: Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003, 100: 9958-9961. 10.1073/pnas.1733025100.PubMedCentralCrossRefPubMed
47.
go back to reference Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L, Koenig K, Duong J, Aki R, Saito N, Mii S, Amoh Y, Katsuoka K, Hoffman RM: The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle. 2011, 10: 830-839. 10.4161/cc.10.5.14969.CrossRefPubMed Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L, Koenig K, Duong J, Aki R, Saito N, Mii S, Amoh Y, Katsuoka K, Hoffman RM: The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle. 2011, 10: 830-839. 10.4161/cc.10.5.14969.CrossRefPubMed
Metadata
Title
Inflammatory cascades mediate synapse elimination in spinal cord compression
Authors
Morito Takano
Soya Kawabata
Yuji Komaki
Shinsuke Shibata
Keigo Hikishima
Yoshiaki Toyama
Hideyuki Okano
Masaya Nakamura
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-11-40

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue