Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation

Authors: Celina Wu, Soo Y Leong, Craig S Moore, Qiao Ling Cui, Pavel Gris, Louis-Philippe Bernier, Trina A Johnson, Philippe Séguéla, Timothy E Kennedy, Amit Bar-Or, Jack P Antel

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

FTY720 (fingolimod, Gilenya™) is a daily oral therapy for multiple sclerosis that readily accesses the central nervous system (CNS). FTY720 is a structural analog to the sphingolipid sphingosine-1-phosphate (S1P) and is a cognate ligand for the S1P G-protein coupled receptors (S1PR). Studies in experimental autoimmune encephalomyelitis using mice with conditionally deleted S1P1R from astrocytes indicate that one beneficial effect of FTY720 in this model is via downregulating external receptors, which inhibits responses induced by the natural ligand. Another proposed effect of FTY720 on neuroinflammation is its ability to maintain persistent signaling in cells via internalized S1P1R resulting in functional responses that include suppressing intracellular calcium release. We used human fetal astrocytes to investigate potential dual inhibitory- and function-inducing effects of daily FTY720 on responses relevant to neuroinflammation. For the inhibitory effects, we used signaling and proliferation induced by the natural ligand S1P. For the function-inducing responses, we measured inhibition of intracellular calcium release stimulated by the proinflammatory cytokine, interleukin (IL)-1β.

Methods

Astrocytes derived from human fetal CNS specimens and maintained in dissociated cultures were exposed to 100 nM of the biologically active form of FTY720 over a dosing regimen that ranged from a single exposure (with or without washout after 1 h) to daily exposures up to 5 days. Responses measured include: phosphorylation of extracellular-signal-regulated kinases (pERK1/2) by Western blotting, Ki-67 immunolabeling for cell proliferation, IL-1β-induced calcium release by ratiometric fluorescence, and cytokine/chemokine (IL-6, CXCL10) secretions by ELISA.

Results

We observed that a single addition of FTY720 inhibited subsequent S1PR ligand-induced pERK1/2 signaling for >24 h. Daily FTY720 treatments (3-5 days) maintained this effect together with a loss of proliferative responses to the natural ligand S1P. Repeated FTY720 dosing concurrently maintained a functional cell response as measured by the inhibition of intracellular calcium release when stimulated by the cytokine IL-1β. Recurrent FTY720 treatments did not inhibit serum- or IL-1β-induced pERK1/2. The secretions of IL-6 and CXCL10 in response to IL-1β were unaffected by FTY720 treatment(s).

Conclusion

Our results indicate that daily FTY720 exposures may regulate specific neuroinflammatory responses by desensitizing astrocytes to external S1PR stimuli while sustaining cellular influences that are independent of new surface S1PR activation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P: The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002, 277:21453–21457.CrossRefPubMed Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P: The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002, 277:21453–21457.CrossRefPubMed
2.
go back to reference Graler MH, Goetzl EJ: The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 2004, 18:551–553.PubMed Graler MH, Goetzl EJ: The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 2004, 18:551–553.PubMed
3.
go back to reference Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, Reuschel R, Beerli C, Schwartz M, Billich A: Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 2007, 323:469–475.CrossRefPubMed Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, Reuschel R, Beerli C, Schwartz M, Billich A: Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 2007, 323:469–475.CrossRefPubMed
4.
go back to reference Schubart A, Howard LM, Seabrook T: FTY720 suppresses ongoing EAE and promotes a remyelinating environment preventing axonal degeneration within the CNS. Neurology 2008, 70:A339. Schubart A, Howard LM, Seabrook T: FTY720 suppresses ongoing EAE and promotes a remyelinating environment preventing axonal degeneration within the CNS. Neurology 2008, 70:A339.
5.
go back to reference Norimatsu Y, Ohmori T, Kimura A, Madoiwa S, Mimuro J, Seichi A, Yatomi Y, Hoshino Y, Sakata Y: FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am J Pathol 2012, 180:1625–1635.CrossRefPubMed Norimatsu Y, Ohmori T, Kimura A, Madoiwa S, Mimuro J, Seichi A, Yatomi Y, Hoshino Y, Sakata Y: FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am J Pathol 2012, 180:1625–1635.CrossRefPubMed
6.
go back to reference Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K: Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol 2009, 5:428–434.CrossRefPubMed Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K: Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol 2009, 5:428–434.CrossRefPubMed
7.
go back to reference Osinde M, Mullershausen F, Dev KK: Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology 2007, 52:1210–1218.CrossRefPubMed Osinde M, Mullershausen F, Dev KK: Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology 2007, 52:1210–1218.CrossRefPubMed
8.
go back to reference Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G, Chun J: FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A 2011, 108:751–756.CrossRefPubMed Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G, Chun J: FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A 2011, 108:751–756.CrossRefPubMed
9.
10.
go back to reference Rzigalinski BA, Liang S, McKinney JS, Willoughby KA, Ellis EF: Effect of Ca2+ on in vitro astrocyte injury. J Neurochem 1997, 68:289–296.CrossRefPubMed Rzigalinski BA, Liang S, McKinney JS, Willoughby KA, Ellis EF: Effect of Ca2+ on in vitro astrocyte injury. J Neurochem 1997, 68:289–296.CrossRefPubMed
11.
go back to reference Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T: Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 2007, 282:9082–9089.CrossRefPubMed Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T: Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 2007, 282:9082–9089.CrossRefPubMed
12.
go back to reference Williams KC, Dooley NP, Ulvestad E, Waage A, Blain M, Yong VW, Antel JP: Antigen presentation by human fetal astrocytes with the cooperative effect of microglia or the microglial-derived cytokine IL-1. J Neurosci 1995, 15:1869–1878.PubMed Williams KC, Dooley NP, Ulvestad E, Waage A, Blain M, Yong VW, Antel JP: Antigen presentation by human fetal astrocytes with the cooperative effect of microglia or the microglial-derived cytokine IL-1. J Neurosci 1995, 15:1869–1878.PubMed
13.
go back to reference Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985, 260:3440–3450.PubMed Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985, 260:3440–3450.PubMed
14.
go back to reference Durafourt BA, Lambert C, Johnson TA, Blain M, Bar-Or A, Antel JP: Differential responses of human microglia and blood-derived myeloid cells to FTY720. J Neuroimmunol 2011, 230:10–16.CrossRefPubMed Durafourt BA, Lambert C, Johnson TA, Blain M, Bar-Or A, Antel JP: Differential responses of human microglia and blood-derived myeloid cells to FTY720. J Neuroimmunol 2011, 230:10–16.CrossRefPubMed
15.
go back to reference Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984, 133:1710–1715.PubMed Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984, 133:1710–1715.PubMed
16.
go back to reference Pebay A, Toutant M, Premont J, Calvo CF, Venance L, Cordier J, Glowinski J, Tence M: Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur J Neurosci 2001, 13:2067–2076.CrossRef Pebay A, Toutant M, Premont J, Calvo CF, Venance L, Cordier J, Glowinski J, Tence M: Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur J Neurosci 2001, 13:2067–2076.CrossRef
17.
go back to reference Yoshida Y, Nakada M, Sugimoto N, Harada T, Hayashi Y, Kita D, Uchiyama N, Yachie A, Takuwa Y, Hamada J: Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 2010, 126:2341–2352.PubMed Yoshida Y, Nakada M, Sugimoto N, Harada T, Hayashi Y, Kita D, Uchiyama N, Yachie A, Takuwa Y, Hamada J: Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 2010, 126:2341–2352.PubMed
18.
go back to reference Kennedy PC, Zhu R, Huang T, Tomsig JL, Mathews TP, David M, Peyruchaud O, Macdonald TL, Lynch KR: Characterization of a sphingosine 1-phosphate receptor antagonist prodrug. J Pharmacol Exp Ther 2011,338(3):879–889.CrossRefPubMedPubMedCentral Kennedy PC, Zhu R, Huang T, Tomsig JL, Mathews TP, David M, Peyruchaud O, Macdonald TL, Lynch KR: Characterization of a sphingosine 1-phosphate receptor antagonist prodrug. J Pharmacol Exp Ther 2011,338(3):879–889.CrossRefPubMedPubMedCentral
19.
go back to reference Pekney M, Nilsson M: Astrocyte activation and reactive gliosis. Glia 2005,50(4):427–434.CrossRef Pekney M, Nilsson M: Astrocyte activation and reactive gliosis. Glia 2005,50(4):427–434.CrossRef
20.
go back to reference Kihara A, Mitsutake S, Mizutani Y, Igarashi Y: Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2007, 46:126–144.CrossRefPubMed Kihara A, Mitsutake S, Mizutani Y, Igarashi Y: Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2007, 46:126–144.CrossRefPubMed
21.
go back to reference Zu Heringdorf DM, Vincent ME, Lipinski M, Danneberg K, Stropp U, Wang DA, Tigyi G, Jakobs KH: Inhibition of Ca(2+) signalling by the sphingosine 1-phosphate receptor S1P(1). Cell Signal 2003, 15:677–687.CrossRefPubMed Zu Heringdorf DM, Vincent ME, Lipinski M, Danneberg K, Stropp U, Wang DA, Tigyi G, Jakobs KH: Inhibition of Ca(2+) signalling by the sphingosine 1-phosphate receptor S1P(1). Cell Signal 2003, 15:677–687.CrossRefPubMed
22.
go back to reference Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA: Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 2007, 293:C1103-C1111.CrossRefPubMed Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA: Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 2007, 293:C1103-C1111.CrossRefPubMed
23.
go back to reference Holliday J, Gruol DL: Cytokine stimulation increases intracellular calcium and alters the response to quisqualate in cultured cortical astrocytes. Brain Res 1993, 621:233–241.CrossRefPubMed Holliday J, Gruol DL: Cytokine stimulation increases intracellular calcium and alters the response to quisqualate in cultured cortical astrocytes. Brain Res 1993, 621:233–241.CrossRefPubMed
Metadata
Title
Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation
Authors
Celina Wu
Soo Y Leong
Craig S Moore
Qiao Ling Cui
Pavel Gris
Louis-Philippe Bernier
Trina A Johnson
Philippe Séguéla
Timothy E Kennedy
Amit Bar-Or
Jack P Antel
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-41

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue