Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder

Authors: Valerio Napolioni, Benjamin Ober-Reynolds, Szabolcs Szelinger, Jason J Corneveaux, Traci Pawlowski, Sharman Ober-Reynolds, Janet Kirwan, Antonio M Persico, Raun D Melmed, David W Craig, Christopher J Smith, Matthew J Huentelman

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Objective

Converging lines of evidence point to the existence of immune dysfunction in autism spectrum disorder (ASD), which could directly affect several key neurodevelopmental processes. Previous studies have shown higher cytokine levels in patients with autism compared with matched controls or subjects with other developmental disorders. In the current study, we used plasma-cytokine profiling for 25 discordant sibling pairs to evaluate whether these alterations occur within families with ASD.

Methods

Plasma-cytokine profiling was conducted using an array-based multiplex sandwich ELISA for simultaneous quantitative measurement of 40 unique targets. We also analyzed the correlations between cytokine levels and clinically relevant quantitative traits (Vineland Adaptive Behavior Scale in Autism (VABS) composite score, Social Responsiveness Scale (SRS) total T score, head circumference, and full intelligence quotient (IQ)). In addition, because of the high phenotypic heterogeneity of ASD, we defined four subgroups of subjects (those who were non-verbal, those with gastrointestinal issues, those with regressive autism, and those with a history of allergies), which encompass common and/or recurrent endophenotypes in ASD, and tested the cytokine levels in each group.

Results

None of the measured parameters showed significant differences between children with ASD and their related typically developing siblings. However, specific target levels did correlate with quantitative clinical traits, and these were significantly different when the ASD subgroups were analyzed. It is notable that these differences seem to be attributable to a predisposing immunogenetic background, as no other significant differences were noticed between discordant sibling pairs. Interleukin-1β appears to be the cytokine most involved in quantitative traits and clinical subgroups of ASD.

Conclusions

In the present study, we found a lack of significant differences in plasma-cytokine levels between children with ASD and in their related non-autistic siblings. Thus, our results support the evidence that the immune profiles of children with autism do not differ from their typically developing siblings. However, the significant association of cytokine levels with the quantitative traits and the clinical subgroups analyzed suggests that altered immune responses may affect core feature of ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. fourth edition, text revision edition. Washington, DC: American Psychiatric Association; 2000. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. fourth edition, text revision edition. Washington, DC: American Psychiatric Association; 2000.
2.
go back to reference Lintas C, Persico AM: Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 2009, 46:1–8.CrossRefPubMed Lintas C, Persico AM: Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 2009, 46:1–8.CrossRefPubMed
3.
go back to reference Persico AM, Bourgeron T: Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006, 29:349–358.CrossRefPubMed Persico AM, Bourgeron T: Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006, 29:349–358.CrossRefPubMed
4.
go back to reference Onore C, Careaga M, Ashwood P: The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012, 26:383–392.CrossRefPubMed Onore C, Careaga M, Ashwood P: The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012, 26:383–392.CrossRefPubMed
5.
go back to reference Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN: Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999, 14:388–394.CrossRefPubMed Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN: Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999, 14:388–394.CrossRefPubMed
6.
go back to reference Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P: Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 2009, 23:124–133.CrossRefPubMed Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P: Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 2009, 23:124–133.CrossRefPubMed
7.
go back to reference Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM: Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008, 30:303–311.CrossRefPubMedPubMedCentral Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM: Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008, 30:303–311.CrossRefPubMedPubMedCentral
8.
go back to reference Goines P, Haapanen L, Boyce R, Duncanson P, Braunschweig D, Delwiche L, Hansen R, Hertz-Picciotto I, Ashwood P, Van de Water J: Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun 2011, 25:514–523.CrossRefPubMed Goines P, Haapanen L, Boyce R, Duncanson P, Braunschweig D, Delwiche L, Hansen R, Hertz-Picciotto I, Ashwood P, Van de Water J: Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun 2011, 25:514–523.CrossRefPubMed
9.
go back to reference Mostafa GA, Al-Ayadhi LY: A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 2011, 8:71.CrossRefPubMedPubMedCentral Mostafa GA, Al-Ayadhi LY: A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 2011, 8:71.CrossRefPubMedPubMedCentral
10.
go back to reference Mostafa GA, El-Sayed ZA, El-Aziz MM, El-Sayed MF: Serum anti-myelin-associated glycoprotein antibodies in Egyptian autistic children. J Child Neurol 2008, 23:1413–1418.CrossRefPubMed Mostafa GA, El-Sayed ZA, El-Aziz MM, El-Sayed MF: Serum anti-myelin-associated glycoprotein antibodies in Egyptian autistic children. J Child Neurol 2008, 23:1413–1418.CrossRefPubMed
11.
go back to reference Mostafa GA, Al-Ayadhi LY: Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. J Neuroinflammation 2011, 8:39.CrossRefPubMedPubMedCentral Mostafa GA, Al-Ayadhi LY: Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. J Neuroinflammation 2011, 8:39.CrossRefPubMedPubMedCentral
12.
go back to reference Mostafa GA, Al-Ayadhi LY: The relationship between the increased frequency of serum antineuronal antibodies and the severity of autism in children. Eur J Paediatr Neurol 2012, 16:464–468.CrossRefPubMed Mostafa GA, Al-Ayadhi LY: The relationship between the increased frequency of serum antineuronal antibodies and the severity of autism in children. Eur J Paediatr Neurol 2012, 16:464–468.CrossRefPubMed
13.
go back to reference Zhang B, Angelidou A, Alysandratos KD, Vasiadi M, Francis K, Asadi S, Theoharides A, Sideri K, Lykouras L, Kalogeromitros D, Theoharides TC: Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children. J Neuroinflammation 2010, 7:80.CrossRefPubMedPubMedCentral Zhang B, Angelidou A, Alysandratos KD, Vasiadi M, Francis K, Asadi S, Theoharides A, Sideri K, Lykouras L, Kalogeromitros D, Theoharides TC: Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children. J Neuroinflammation 2010, 7:80.CrossRefPubMedPubMedCentral
14.
go back to reference Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P, Rocke DM, Sharp FR: A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 2007, 12:292–306.PubMed Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P, Rocke DM, Sharp FR: A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 2007, 12:292–306.PubMed
15.
go back to reference Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M: Activation of the inflammatory response system in autism. Neuropsychobiology 2002, 45:1–6.CrossRefPubMed Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M: Activation of the inflammatory response system in autism. Neuropsychobiology 2002, 45:1–6.CrossRefPubMed
16.
go back to reference Croonenberghs J, Wauters A, Devreese K, Verkerk R, Scharpe S, Bosmans E, Egyed B, Deboutte D, Maes M: Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol Med 2002, 32:1457–1463.CrossRefPubMed Croonenberghs J, Wauters A, Devreese K, Verkerk R, Scharpe S, Bosmans E, Egyed B, Deboutte D, Maes M: Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol Med 2002, 32:1457–1463.CrossRefPubMed
17.
go back to reference Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E, Ruta L, Kent L, Spain M, Baron-Cohen S, Bahn S: Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatry 2011, 16:1213–1220.CrossRefPubMed Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E, Ruta L, Kent L, Spain M, Baron-Cohen S, Bahn S: Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatry 2011, 16:1213–1220.CrossRefPubMed
18.
go back to reference Singh VK, Warren RP, Odell JD, Cole P: Changes of soluble interleukin-2, interleukin-2 receptor, T8 antigen, and interleukin-1 in the serum of autistic children. Clin Immunol Immunopathol 1991, 61:448–455.CrossRefPubMed Singh VK, Warren RP, Odell JD, Cole P: Changes of soluble interleukin-2, interleukin-2 receptor, T8 antigen, and interleukin-1 in the serum of autistic children. Clin Immunol Immunopathol 1991, 61:448–455.CrossRefPubMed
19.
go back to reference Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP: Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 2005, 33:195–201.CrossRefPubMed Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP: Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 2005, 33:195–201.CrossRefPubMed
20.
go back to reference Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J: Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011, 25:40–45.CrossRefPubMed Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J: Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011, 25:40–45.CrossRefPubMed
21.
go back to reference Onore C, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Van de Water J, Ashwood P: Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. J Neuroimmunol 2009, 216:126–129.CrossRefPubMedPubMedCentral Onore C, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Van de Water J, Ashwood P: Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. J Neuroimmunol 2009, 216:126–129.CrossRefPubMedPubMedCentral
22.
go back to reference Grigorenko EL, Han SS, Yrigollen CM, Leng L, Mizue Y, Anderson GM, Mulder EJ, de Bildt A, Minderaa RB, Volkmar FR, Chang JT, Bucala R: Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008, 122:e438-e445.CrossRefPubMed Grigorenko EL, Han SS, Yrigollen CM, Leng L, Mizue Y, Anderson GM, Mulder EJ, de Bildt A, Minderaa RB, Volkmar FR, Chang JT, Bucala R: Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008, 122:e438-e445.CrossRefPubMed
23.
go back to reference Singh VK: Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol 1996, 66:143–145.CrossRefPubMed Singh VK: Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol 1996, 66:143–145.CrossRefPubMed
24.
go back to reference Sweeten TL, Posey DJ, Shankar S, McDougle CJ: High nitric oxide production in autistic disorder: a possible role for interferon-gamma. Biol Psychiatry 2004, 55:434–437.CrossRefPubMed Sweeten TL, Posey DJ, Shankar S, McDougle CJ: High nitric oxide production in autistic disorder: a possible role for interferon-gamma. Biol Psychiatry 2004, 55:434–437.CrossRefPubMed
25.
go back to reference Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai S, Matsumoto K, Tsuchiya KJ, Iwata Y, Nakamura K, Tsujii M, Sugiyama T, Mori N: Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One 2011, 6:e20470.CrossRefPubMedPubMedCentral Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai S, Matsumoto K, Tsuchiya KJ, Iwata Y, Nakamura K, Tsujii M, Sugiyama T, Mori N: Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One 2011, 6:e20470.CrossRefPubMedPubMedCentral
26.
go back to reference Angelidou A, Francis K, Vasiadi M, Alysandratos KD, Zhang B, Theoharides A, Lykouras L, Sideri K, Kalogeromitros D, Theoharides TC: Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation 2010, 7:48.CrossRefPubMedPubMedCentral Angelidou A, Francis K, Vasiadi M, Alysandratos KD, Zhang B, Theoharides A, Lykouras L, Sideri K, Kalogeromitros D, Theoharides TC: Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation 2010, 7:48.CrossRefPubMedPubMedCentral
27.
go back to reference Boucher J: Research review: structural language in autistic spectrum disorder - characteristics and causes. J Child Psychol Psychiatry 2012, 53:219–233.CrossRefPubMed Boucher J: Research review: structural language in autistic spectrum disorder - characteristics and causes. J Child Psychol Psychiatry 2012, 53:219–233.CrossRefPubMed
28.
29.
go back to reference Buie T, Campbell DB, Fuchs GJ 3rd, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H: Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 2010, 125:S1-S18.CrossRefPubMed Buie T, Campbell DB, Fuchs GJ 3rd, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H: Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 2010, 125:S1-S18.CrossRefPubMed
30.
go back to reference Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E, Kalogeromitros D: Mast cell activation and autism. Biochim Biophys Acta 2012, 1822:34–41.CrossRefPubMed Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E, Kalogeromitros D: Mast cell activation and autism. Biochim Biophys Acta 2012, 1822:34–41.CrossRefPubMed
31.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The Autism Diagnostic Observation Schedule-Generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000, 30:205–223.CrossRefPubMed Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The Autism Diagnostic Observation Schedule-Generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000, 30:205–223.CrossRefPubMed
32.
go back to reference Lord C, Rutter M, Le Couteur A: Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994, 24:659–685.CrossRefPubMed Lord C, Rutter M, Le Couteur A: Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994, 24:659–685.CrossRefPubMed
33.
go back to reference Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W: Validation of a brief quantitative measure of autistic traits: comparison of the Social Responsiveness Scale with the Autism Diagnostic Interview-Revised. J Autism Dev Disord 2003, 33:427–433.CrossRefPubMed Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W: Validation of a brief quantitative measure of autistic traits: comparison of the Social Responsiveness Scale with the Autism Diagnostic Interview-Revised. J Autism Dev Disord 2003, 33:427–433.CrossRefPubMed
34.
35.
go back to reference Pernerger TV: What’s wrong with Bonferroni adjustments? BMJ 1998, 316:1236–1238.CrossRef Pernerger TV: What’s wrong with Bonferroni adjustments? BMJ 1998, 316:1236–1238.CrossRef
36.
go back to reference Sacco R, Militerni R, Frolli A, Bravaccio C, Gritti A, Elia M, Curatolo P, Manzi B, Trillo S, Lenti C, Saccani M, Schneider C, Melmed R, Reichelt KL, Pascucci T, Puglisi-Allegra S, Persico AM: Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry 2007, 62:1038–1047.CrossRefPubMed Sacco R, Militerni R, Frolli A, Bravaccio C, Gritti A, Elia M, Curatolo P, Manzi B, Trillo S, Lenti C, Saccani M, Schneider C, Melmed R, Reichelt KL, Pascucci T, Puglisi-Allegra S, Persico AM: Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry 2007, 62:1038–1047.CrossRefPubMed
38.
go back to reference Saresella M, Marventano I, Guerini FR, Mancuso R, Ceresa L, Zanzottera M, Rusconi B, Maggioni E, Tinelli C, Clerici M: An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol Psychiatry 2009, 66:978–984.CrossRefPubMed Saresella M, Marventano I, Guerini FR, Mancuso R, Ceresa L, Zanzottera M, Rusconi B, Maggioni E, Tinelli C, Clerici M: An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol Psychiatry 2009, 66:978–984.CrossRefPubMed
39.
go back to reference Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW: Antibrain antibodies in children with autism and their unaffected siblings. J Neuroimmunol 2006, 178:149–155.CrossRefPubMed Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW: Antibrain antibodies in children with autism and their unaffected siblings. J Neuroimmunol 2006, 178:149–155.CrossRefPubMed
40.
go back to reference Constantino JN, Lajonchere C, Lutz M, Gray T, Abbacchi A, McKenna K, Singh D, Todd RD: Autistic social impairment in the siblings of children with pervasive developmental disorders. Am J Psychiatry 2006, 163:294–296.CrossRefPubMed Constantino JN, Lajonchere C, Lutz M, Gray T, Abbacchi A, McKenna K, Singh D, Todd RD: Autistic social impairment in the siblings of children with pervasive developmental disorders. Am J Psychiatry 2006, 163:294–296.CrossRefPubMed
41.
go back to reference Constantino JN, Todd RD: Intergenerational transmission of subthreshold autistic traits in the general population. Biol Psychiatry 2005, 57:655–660.CrossRefPubMed Constantino JN, Todd RD: Intergenerational transmission of subthreshold autistic traits in the general population. Biol Psychiatry 2005, 57:655–660.CrossRefPubMed
42.
go back to reference Alarcón M, Yonan AL, Gilliam TC, Cantor RM, Geschwind DH: Quantitative genome scan and ordered-subsets analysis of autism endophenotypes support language QTLs. Mol Psychiatry 2005, 10:747–757.CrossRefPubMed Alarcón M, Yonan AL, Gilliam TC, Cantor RM, Geschwind DH: Quantitative genome scan and ordered-subsets analysis of autism endophenotypes support language QTLs. Mol Psychiatry 2005, 10:747–757.CrossRefPubMed
43.
go back to reference Yirmiya N, Ozonoff S: The very early autism phenotype. J Autism Dev Disord 2007, 37:1–11.CrossRef Yirmiya N, Ozonoff S: The very early autism phenotype. J Autism Dev Disord 2007, 37:1–11.CrossRef
44.
go back to reference Orsmond GI, Seltzer MM: Siblings of individuals with autism spectrum disorders across the life course. Ment Retard Dev Disabil Res Rev 2007, 13:313–320.CrossRefPubMed Orsmond GI, Seltzer MM: Siblings of individuals with autism spectrum disorders across the life course. Ment Retard Dev Disabil Res Rev 2007, 13:313–320.CrossRefPubMed
45.
go back to reference Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F, Plomin R, Ronald A: Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry 2011, 68:1113–1121.CrossRefPubMedPubMedCentral Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F, Plomin R, Ronald A: Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry 2011, 68:1113–1121.CrossRefPubMedPubMedCentral
46.
go back to reference Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N: Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011, 68:1095–1102.CrossRefPubMedPubMedCentral Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N: Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011, 68:1095–1102.CrossRefPubMedPubMedCentral
47.
go back to reference Nellhaus G: Head circumference from birth to eighteen years: practical composite international and interracial graphs. Pediatrics 1968, 41:106–114.PubMed Nellhaus G: Head circumference from birth to eighteen years: practical composite international and interracial graphs. Pediatrics 1968, 41:106–114.PubMed
49.
go back to reference Ashwood P, Kwong C, Hansen R, Hertz-Picciotto I, Croen L, Krakowiak P, Walker W, Pessah IN, Van de Water J: Plasma leptin levels are elevated in autism: association with early onset phenotype? J Autism Dev Disord 2008, 38:169–175.CrossRefPubMed Ashwood P, Kwong C, Hansen R, Hertz-Picciotto I, Croen L, Krakowiak P, Walker W, Pessah IN, Van de Water J: Plasma leptin levels are elevated in autism: association with early onset phenotype? J Autism Dev Disord 2008, 38:169–175.CrossRefPubMed
50.
go back to reference Bu B, Ashwood P, Harvey D, King IB, Van de Water J, Jin LW: Fatty acid composition of red blood cell phospholipids in children with autism. Prostaglandins Leukot Essent Fatty Acids 2006, 74:215–221.CrossRefPubMed Bu B, Ashwood P, Harvey D, King IB, Van de Water J, Jin LW: Fatty acid composition of red blood cell phospholipids in children with autism. Prostaglandins Leukot Essent Fatty Acids 2006, 74:215–221.CrossRefPubMed
51.
go back to reference Enstrom A, Onore C, Hertz-Picciotto I, Hansen R, Croen L, Van de Water J, Ashwood P: Detection of IL-17 and IL-23 in plasma samples of children with autism. Am J Biochem Biotechnol 2008, 4:114–120.CrossRefPubMedPubMedCentral Enstrom A, Onore C, Hertz-Picciotto I, Hansen R, Croen L, Van de Water J, Ashwood P: Detection of IL-17 and IL-23 in plasma samples of children with autism. Am J Biochem Biotechnol 2008, 4:114–120.CrossRefPubMedPubMedCentral
52.
go back to reference Enstrom A, Onore C, Tarver A, Hertz-Picciotto I, Hansen R, Croen L, Van de Water J, Ashwood P: Peripheral blood leukocyte production of BDNF following mitogen stimulation in early onset and regressive autism. Am J Biochem Biotechnol 2008, 4:121–129.CrossRefPubMedPubMedCentral Enstrom A, Onore C, Tarver A, Hertz-Picciotto I, Hansen R, Croen L, Van de Water J, Ashwood P: Peripheral blood leukocyte production of BDNF following mitogen stimulation in early onset and regressive autism. Am J Biochem Biotechnol 2008, 4:121–129.CrossRefPubMedPubMedCentral
53.
go back to reference Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether J, Hansen R, Kharrazi M, Ashwood P, Van de Water J: Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case–control study. Mol Autism 2011, 2:13.CrossRefPubMedPubMedCentral Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether J, Hansen R, Kharrazi M, Ashwood P, Van de Water J: Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case–control study. Mol Autism 2011, 2:13.CrossRefPubMedPubMedCentral
54.
go back to reference Chiba N, Masuda A, Yoshikai Y, Matsuguchi T: Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J Cell Physiol 2007, 213:126–136.CrossRefPubMed Chiba N, Masuda A, Yoshikai Y, Matsuguchi T: Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J Cell Physiol 2007, 213:126–136.CrossRefPubMed
55.
go back to reference Takatsu K, Kouro T, Nagai Y: Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 2009, 101:191–236.CrossRefPubMed Takatsu K, Kouro T, Nagai Y: Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 2009, 101:191–236.CrossRefPubMed
56.
go back to reference Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J: Autism: Maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 2008, 29:226–231.PubMed Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J: Autism: Maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 2008, 29:226–231.PubMed
57.
go back to reference Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J: Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 2011, 232:196–199.CrossRefPubMed Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J: Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 2011, 232:196–199.CrossRefPubMed
58.
go back to reference Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57:67–81.CrossRefPubMed Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57:67–81.CrossRefPubMed
59.
go back to reference An Y, Chen Q, Quan N: Interleukin-1 exerts distinct actions on different cell types of the brain in vitro . J Inflamm Res 2011, 2011:11–20.PubMed An Y, Chen Q, Quan N: Interleukin-1 exerts distinct actions on different cell types of the brain in vitro . J Inflamm Res 2011, 2011:11–20.PubMed
60.
go back to reference Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X: IL-6 is increased in the cerebellum of brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011, 8:52.CrossRefPubMedPubMedCentral Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X: IL-6 is increased in the cerebellum of brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011, 8:52.CrossRefPubMedPubMedCentral
61.
go back to reference Smith SE, Li J, Garbett K, Mirnics K, Patterson PH: Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007, 27:10695–10702.CrossRefPubMedPubMedCentral Smith SE, Li J, Garbett K, Mirnics K, Patterson PH: Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007, 27:10695–10702.CrossRefPubMedPubMedCentral
62.
go back to reference Pérez-Martínez L, Jaworski DM: Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci 2005, 25:4917–4929.CrossRefPubMedPubMedCentral Pérez-Martínez L, Jaworski DM: Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci 2005, 25:4917–4929.CrossRefPubMedPubMedCentral
63.
go back to reference Luther SA, Ansel KM, Cyster JG: Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 2003, 197:1191–1198.CrossRefPubMedPubMedCentral Luther SA, Ansel KM, Cyster JG: Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 2003, 197:1191–1198.CrossRefPubMedPubMedCentral
64.
go back to reference Michaelson MD, Mehler MF, Xu H, Gross RE, Kessler JA: Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain. Dev Biol 1996, 179:251–263.CrossRefPubMed Michaelson MD, Mehler MF, Xu H, Gross RE, Kessler JA: Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain. Dev Biol 1996, 179:251–263.CrossRefPubMed
65.
go back to reference Huang YS, Cheng SN, Chueh SH, Tsai YL, Liou NH, Guo YW, Liao MH, Shen LH, Chen CC, Liu JC, Ma KH: Effects of interleukin-15 on neuronal differentiation of neural stem cells. Brain Res 2009, 1304:38–48.CrossRefPubMed Huang YS, Cheng SN, Chueh SH, Tsai YL, Liou NH, Guo YW, Liao MH, Shen LH, Chen CC, Liu JC, Ma KH: Effects of interleukin-15 on neuronal differentiation of neural stem cells. Brain Res 2009, 1304:38–48.CrossRefPubMed
66.
go back to reference Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, Momoi T: Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A 2008, 105:3117–3122.CrossRefPubMedPubMedCentral Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, Momoi T: Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A 2008, 105:3117–3122.CrossRefPubMedPubMedCentral
67.
go back to reference Krieger M, Both M, Kranig SA, Pitzer C, Klugmann M, Vogt G, Draguhn A, Schneider A: The hematopoietic cytokine granulocyte-macrophage colony stimulating factor is important for cognitive functions. Sci Rep 2012, 2:697.CrossRefPubMedPubMedCentral Krieger M, Both M, Kranig SA, Pitzer C, Klugmann M, Vogt G, Draguhn A, Schneider A: The hematopoietic cytokine granulocyte-macrophage colony stimulating factor is important for cognitive functions. Sci Rep 2012, 2:697.CrossRefPubMedPubMedCentral
68.
go back to reference Bender AT, Beavo JA: Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int 2004, 45:853–857.CrossRefPubMed Bender AT, Beavo JA: Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int 2004, 45:853–857.CrossRefPubMed
69.
go back to reference Hashimoto SI, Komuro I, Yamada M, Akagawa KS: IL-10 inhibits granulocyte-macrophage colony-stimulating factor-dependent human monocyte survival at the early stage of the culture and inhibits the generation of macrophages. J Immunol 2001, 167:3619–3625.CrossRefPubMed Hashimoto SI, Komuro I, Yamada M, Akagawa KS: IL-10 inhibits granulocyte-macrophage colony-stimulating factor-dependent human monocyte survival at the early stage of the culture and inhibits the generation of macrophages. J Immunol 2001, 167:3619–3625.CrossRefPubMed
70.
go back to reference Takasugi K, Yamamura M, Iwahashi M, Otsuka F, Yamana J, Sunahori K, Kawashima M, Yamada M, Makino H: Induction of tumour necrosis factor receptor-expressing macrophages by interleukin-10 and macrophage colony-stimulating factor in rheumatoid arthritis. Arthritis Res Ther 2006, 8:R126.40.CrossRef Takasugi K, Yamamura M, Iwahashi M, Otsuka F, Yamana J, Sunahori K, Kawashima M, Yamada M, Makino H: Induction of tumour necrosis factor receptor-expressing macrophages by interleukin-10 and macrophage colony-stimulating factor in rheumatoid arthritis. Arthritis Res Ther 2006, 8:R126.40.CrossRef
71.
go back to reference Persico AM, Napolioni V: Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol 2012. Persico AM, Napolioni V: Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol 2012.
72.
go back to reference Brynskov J, Tvede N, Andersen CB, Vilien M: Increased concentrations of interleukin 1 beta, interleukin-2, and soluble interleukin-2 receptors in endoscopical mucosal biopsy specimens with active inflammatory bowel disease. Gut 1992, 33:55–58.CrossRefPubMedPubMedCentral Brynskov J, Tvede N, Andersen CB, Vilien M: Increased concentrations of interleukin 1 beta, interleukin-2, and soluble interleukin-2 receptors in endoscopical mucosal biopsy specimens with active inflammatory bowel disease. Gut 1992, 33:55–58.CrossRefPubMedPubMedCentral
73.
74.
go back to reference Musso T, Espinoza-Delgado I, Pulkki K, Gusella GL, Longo DL, Varesio L: IL-2 induces IL-6 production in human monocytes. J Immunol 1992, 148:795–800.PubMed Musso T, Espinoza-Delgado I, Pulkki K, Gusella GL, Longo DL, Varesio L: IL-2 induces IL-6 production in human monocytes. J Immunol 1992, 148:795–800.PubMed
75.
go back to reference Master SR, Bierl C, Kricka LJ: Diagnostic challenges for multiplexed protein microarrays. Drug Discov Today 2006, 11:1007–1011.CrossRefPubMed Master SR, Bierl C, Kricka LJ: Diagnostic challenges for multiplexed protein microarrays. Drug Discov Today 2006, 11:1007–1011.CrossRefPubMed
76.
go back to reference Sanchez-Carbayo M: Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem 2006, 52:1651–1659.CrossRefPubMed Sanchez-Carbayo M: Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem 2006, 52:1651–1659.CrossRefPubMed
77.
go back to reference Litteljohn D, Hayley S: Cytokines as potential biomarkers for Parkinson’s disease: a multiplex approach. Methods Mol Biol 2012, 934:121–144.CrossRefPubMed Litteljohn D, Hayley S: Cytokines as potential biomarkers for Parkinson’s disease: a multiplex approach. Methods Mol Biol 2012, 934:121–144.CrossRefPubMed
Metadata
Title
Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder
Authors
Valerio Napolioni
Benjamin Ober-Reynolds
Szabolcs Szelinger
Jason J Corneveaux
Traci Pawlowski
Sharman Ober-Reynolds
Janet Kirwan
Antonio M Persico
Raun D Melmed
David W Craig
Christopher J Smith
Matthew J Huentelman
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-38

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue