Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Tamoxifen as an effective neuroprotectant against early brain injury and learning deficits induced by subarachnoid hemorrhage: possible involvement of inflammatory signaling

Authors: Xuebo Sun, Chengyuan Ji, Tong Hu, Zhong Wang, Gang Chen

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Tamoxifen, a selective estrogen receptor modulator, has successfully been used to treat several animal models of brain injury, but the underlying mechanisms remain unclear. This study was undertaken to evaluate the effect of tamoxifen on the toll-like receptor 4 (TLR4)- and nuclear factor-κB (NF-κB)-related inflammatory signaling pathway and secondary brain injury in rats after subarachnoid hemorrhage (SAH).

Methods

Adult male Sprague-Dawley rats were divided into four groups: (1) control group (n = 28); (2) SAH group (n = 28); (3) SAH + vehicle group (n = 28); and (4) SAH + tamoxifen group (n = 28). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once on day 0. In SAH + tamoxifen group, tamoxifen was administered intraperitoneally at a dose of 5 mg/kg at 2 h, 12 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated at 48 h after SAH. In the second set of experiments, the Morris water maze was used to investigate cognitive and memory changes.

Results

We found that treatment with tamoxifen markedly inhibited the protein expressions of TLR4, NF-κB and the downstream inflammatory agents, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1). Administration of tamoxifen following SAH significantly ameliorated the early brain injury (EBI), such as brain edema, blood-brain barrier (BBB) impairment, and clinical behavior scale. Learning deficits induced by SAH were markedly alleviated after tamoxifen treatment.

Conclusions

Post-SAH tamoxifen administration may attenuate TLR4/NF-kappaB-mediated inflammatory response in the rat brain and result in abatement of the development of EBI and cognitive dysfunction after SAH.
Literature
1.
go back to reference Bian LH, Liu YF, Nichols LT, Wang CX, Wang YL, Liu GF, Wang WJ, Zhao XQ: Epidemiology of subarachnoid hemorrhage, patterns of management, and outcomes in China: a hospital-based multicenter prospective study. CNS Neurosci Ther 2012, 18:895–902.CrossRefPubMed Bian LH, Liu YF, Nichols LT, Wang CX, Wang YL, Liu GF, Wang WJ, Zhao XQ: Epidemiology of subarachnoid hemorrhage, patterns of management, and outcomes in China: a hospital-based multicenter prospective study. CNS Neurosci Ther 2012, 18:895–902.CrossRefPubMed
2.
go back to reference Sabri M, Lass E, Macdonald RL: Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013, 2013:394036.PubMedPubMedCentral Sabri M, Lass E, Macdonald RL: Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013, 2013:394036.PubMedPubMedCentral
3.
go back to reference Caner B, Hou J, Altay O, Fuj M 2nd, Zhang JH: Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 2012,123(Suppl 2):12–21.CrossRefPubMed Caner B, Hou J, Altay O, Fuj M 2nd, Zhang JH: Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 2012,123(Suppl 2):12–21.CrossRefPubMed
5.
go back to reference Al-Khindi T, Macdonald RL, Schweizer TA: Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 2010, 41:e519-e536.CrossRefPubMed Al-Khindi T, Macdonald RL, Schweizer TA: Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 2010, 41:e519-e536.CrossRefPubMed
6.
go back to reference Kunath F, Keck B, Antes G, Wullich B, Meerpohl JJ: Tamoxifen for the management of breast events induced by non-steroidal antiandrogens in patients with prostate cancer: a systematic review. BMC Med 2012, 10:96.CrossRefPubMedPubMedCentral Kunath F, Keck B, Antes G, Wullich B, Meerpohl JJ: Tamoxifen for the management of breast events induced by non-steroidal antiandrogens in patients with prostate cancer: a systematic review. BMC Med 2012, 10:96.CrossRefPubMedPubMedCentral
7.
go back to reference Tian DS, Liu JL, Xie MJ, Zhan Y, Qu WS, Yu ZY, Tang ZP, Pan DJ, Wang W: Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 2009, 109:1658–1667.CrossRefPubMed Tian DS, Liu JL, Xie MJ, Zhan Y, Qu WS, Yu ZY, Tang ZP, Pan DJ, Wang W: Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 2009, 109:1658–1667.CrossRefPubMed
8.
go back to reference Xie Q, Guan J, Wu G, Xi G, Keep RF, Hua Y: Tamoxifen treatment for intracerebral hemorrhage. Acta Neurochir Suppl 2011, 111:271–275.CrossRefPubMed Xie Q, Guan J, Wu G, Xi G, Keep RF, Hua Y: Tamoxifen treatment for intracerebral hemorrhage. Acta Neurochir Suppl 2011, 111:271–275.CrossRefPubMed
9.
go back to reference Osuka K, Feustel PJ, Mongin AA, Tranmer BI, Kimelberq HK: Tamoxifen inhibits nitrotyrosine formation after reversible middle cerebral artery occlusion in the rat. J Neurochem 2001, 76:1842–1850.CrossRefPubMed Osuka K, Feustel PJ, Mongin AA, Tranmer BI, Kimelberq HK: Tamoxifen inhibits nitrotyrosine formation after reversible middle cerebral artery occlusion in the rat. J Neurochem 2001, 76:1842–1850.CrossRefPubMed
10.
go back to reference Feng Y, Fratkins JD, LeBlanc MH: Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats. Eur J Pharmacol 2004, 484:65–74.CrossRefPubMed Feng Y, Fratkins JD, LeBlanc MH: Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats. Eur J Pharmacol 2004, 484:65–74.CrossRefPubMed
11.
go back to reference Tapia-Gonzalez S, Carrero P, Pernia O, Garcia-Segura LM, Diz-Chaves Y: Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol 2008, 198:219–230.CrossRefPubMed Tapia-Gonzalez S, Carrero P, Pernia O, Garcia-Segura LM, Diz-Chaves Y: Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol 2008, 198:219–230.CrossRefPubMed
12.
go back to reference Suuronen T, Nuutinen T, Huuskonen J, Ojala J, Thornell A, Salminen A: Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells. Inflamm Res 2005, 54:194–203.CrossRefPubMed Suuronen T, Nuutinen T, Huuskonen J, Ojala J, Thornell A, Salminen A: Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells. Inflamm Res 2005, 54:194–203.CrossRefPubMed
13.
go back to reference Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, Zhang J, Liu HX, He WC, Shen XM, Shu Z, Chen G: Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 2012, 53:129–137.CrossRefPubMed Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, Zhang J, Liu HX, He WC, Shen XM, Shu Z, Chen G: Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 2012, 53:129–137.CrossRefPubMed
14.
go back to reference Roof RL, Duvdevani R, Heyburn JW, Stein DG: Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol 1996, 138:246–251.CrossRefPubMed Roof RL, Duvdevani R, Heyburn JW, Stein DG: Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol 1996, 138:246–251.CrossRefPubMed
15.
go back to reference Yamaguchi M, Zhou C, Nanda A, Zhang JH: Ras protein contributes to cerebral vasospasm in a canine double hemorrhage model. Stroke 2004, 35:1750–1755.CrossRefPubMed Yamaguchi M, Zhou C, Nanda A, Zhang JH: Ras protein contributes to cerebral vasospasm in a canine double hemorrhage model. Stroke 2004, 35:1750–1755.CrossRefPubMed
16.
go back to reference Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X: Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 2007, 425:177–182.CrossRefPubMed Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X: Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 2007, 425:177–182.CrossRefPubMed
17.
go back to reference Jeon H, Ai J, Sabri M, Tariq A, Macdonald RL: Learning deficits after experimental subarachnoid hemorrhage in rats. Neuroscience 2010, 169:1805–1814.CrossRefPubMed Jeon H, Ai J, Sabri M, Tariq A, Macdonald RL: Learning deficits after experimental subarachnoid hemorrhage in rats. Neuroscience 2010, 169:1805–1814.CrossRefPubMed
18.
go back to reference Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M, Cheng AL: Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 2002, 63:1709–1716.CrossRefPubMed Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M, Cheng AL: Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 2002, 63:1709–1716.CrossRefPubMed
19.
go back to reference Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, Yu ZY, Wang W, Wu G: Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res 2010, 1316:101–111.CrossRefPubMed Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, Yu ZY, Wang W, Wu G: Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res 2010, 1316:101–111.CrossRefPubMed
20.
go back to reference Provencio JJ: Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. Acta Neurochir Suppl 2013, 115:233–238.PubMedPubMedCentral Provencio JJ: Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. Acta Neurochir Suppl 2013, 115:233–238.PubMedPubMedCentral
21.
go back to reference Wang Z, Zuo G, Shi XY, Zhang J, Fang Q, Chen G: Progesterone administration modulates cortical TLR4/NF-κB signaling pathway after subarachnoid hemorrhage in male rats. Mediators Inflamm 2011, 2011:848309.CrossRefPubMedPubMedCentral Wang Z, Zuo G, Shi XY, Zhang J, Fang Q, Chen G: Progesterone administration modulates cortical TLR4/NF-κB signaling pathway after subarachnoid hemorrhage in male rats. Mediators Inflamm 2011, 2011:848309.CrossRefPubMedPubMedCentral
22.
go back to reference Fang Q, Chen G, Zhu W, Dong W, Wang Z: Influence of melatonin on cerebrovascular proinflammatory mediators expression and oxidative stress following subarachnoid hemorrhage in rabbits. Mediators Inflamm 2009, 2009:426346.CrossRefPubMed Fang Q, Chen G, Zhu W, Dong W, Wang Z: Influence of melatonin on cerebrovascular proinflammatory mediators expression and oxidative stress following subarachnoid hemorrhage in rabbits. Mediators Inflamm 2009, 2009:426346.CrossRefPubMed
23.
go back to reference Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM: Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol 2012, 24:183–190.CrossRefPubMed Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM: Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol 2012, 24:183–190.CrossRefPubMed
24.
go back to reference Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA: Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 2010, 58:93–102.CrossRefPubMed Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA: Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 2010, 58:93–102.CrossRefPubMed
Metadata
Title
Tamoxifen as an effective neuroprotectant against early brain injury and learning deficits induced by subarachnoid hemorrhage: possible involvement of inflammatory signaling
Authors
Xuebo Sun
Chengyuan Ji
Tong Hu
Zhong Wang
Gang Chen
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-157

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue