Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy

Authors: Alexandre Savard, Karine Lavoie, Marie-Elsa Brochu, Djordje Grbic, Martin Lepage, Denis Gris, Guillaume Sebire

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage [Brochu et al.: J Neuroinflammation 8:55, 2011]. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes.

Methods

An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages [Brochu et al.: J Neuroinflammation 8:55, 2011]. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns.

Results

LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology.

Conclusion

In rat pups at a neurodevelopmental age corresponding to full-term human newborns, a systemic pre-exposure to a pathogen component amplified HI-induced mortality and morbidities that are relevant to human pathology. Neuronal cells were the first cells to produce IL-1β in LPS + HI-exposed full-term brains. Such IL-1β production might be responsible for neuronal self-injuries via well-described neurotoxic mechanisms such as IL-1β-induced nitric oxide production, or IL-1β-dependent exacerbation of excitotoxic damage.
Literature
1.
go back to reference Grether JK, Nelson KB: Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 1997, 278:207–211.CrossRefPubMed Grether JK, Nelson KB: Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 1997, 278:207–211.CrossRefPubMed
2.
go back to reference Greenfield AL, Miller F, Gross GW: Diagnosis and management of orthopedic problems in children with cerebral palsy. Semin Musculoskelet Radiol 1999, 3:317–334.CrossRefPubMed Greenfield AL, Miller F, Gross GW: Diagnosis and management of orthopedic problems in children with cerebral palsy. Semin Musculoskelet Radiol 1999, 3:317–334.CrossRefPubMed
3.
go back to reference Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, Sargent MA, Soulikias W, Miller SP: Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 2009, 66:155–164.CrossRefPubMed Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, Sargent MA, Soulikias W, Miller SP: Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 2009, 66:155–164.CrossRefPubMed
6.
go back to reference Towfighi J, Mauger D, Vannucci RC, Vannucci SJ: Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 1997, 100:149–160.CrossRefPubMed Towfighi J, Mauger D, Vannucci RC, Vannucci SJ: Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 1997, 100:149–160.CrossRefPubMed
7.
go back to reference Vannucci RC, Rossini A, Towfighi J, Vannucci SJ: Measuring the accentuation of the brain damage that arises from perinatal cerebral hypoxia-ischemia. Biol Neonate 1997, 72:187–191.CrossRefPubMed Vannucci RC, Rossini A, Towfighi J, Vannucci SJ: Measuring the accentuation of the brain damage that arises from perinatal cerebral hypoxia-ischemia. Biol Neonate 1997, 72:187–191.CrossRefPubMed
8.
go back to reference Wintermark P, Boyd T, Gregas MC, Labrecque M, Hansen A: Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 2010, 203:e571-e579.CrossRef Wintermark P, Boyd T, Gregas MC, Labrecque M, Hansen A: Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 2010, 203:e571-e579.CrossRef
9.
go back to reference Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G: Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 2009, 158:673–682.CrossRefPubMed Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G: Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 2009, 158:673–682.CrossRefPubMed
10.
go back to reference Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H: Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001, 13:1101–1106.CrossRefPubMed Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H: Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001, 13:1101–1106.CrossRefPubMed
11.
go back to reference Coumans AB, Middelanis JS, Garnier Y, Vaihinger HM, Leib SL, Von-Duering MU, Hasaart TH, Jensen A, Berger R: Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 2003, 53:770–775.CrossRefPubMed Coumans AB, Middelanis JS, Garnier Y, Vaihinger HM, Leib SL, Von-Duering MU, Hasaart TH, Jensen A, Berger R: Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 2003, 53:770–775.CrossRefPubMed
12.
go back to reference Brochu ME, Girard S, Lavoie K, Sebire G: Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation 2011, 8:55.CrossRefPubMedPubMedCentral Brochu ME, Girard S, Lavoie K, Sebire G: Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation 2011, 8:55.CrossRefPubMedPubMedCentral
13.
go back to reference Relton JK, Martin D, Thompson RC, Russell DA: Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 1996, 138:206–213.CrossRefPubMed Relton JK, Martin D, Thompson RC, Russell DA: Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 1996, 138:206–213.CrossRefPubMed
14.
go back to reference Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596–2605.CrossRefPubMed Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596–2605.CrossRefPubMed
15.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006, 31:1116–1128.CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006, 31:1116–1128.CrossRefPubMed
16.
go back to reference Yang L, Sameshima H, Ikeda T, Ikenoue T: Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 2004, 30:142–147.CrossRefPubMed Yang L, Sameshima H, Ikeda T, Ikenoue T: Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 2004, 30:142–147.CrossRefPubMed
17.
go back to reference Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sebire G: Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 2005, 27:134–142.CrossRefPubMed Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sebire G: Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 2005, 27:134–142.CrossRefPubMed
19.
go back to reference Fan X, Heijnen CJ, MA V d-K, Groenendaal F, Van-Bel F: The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev 2009, 62:99–108.CrossRefPubMed Fan X, Heijnen CJ, MA V d-K, Groenendaal F, Van-Bel F: The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev 2009, 62:99–108.CrossRefPubMed
20.
go back to reference Lubics A, Reglodi D, Tamas A, Kiss P, Szalai M, Szalontay L, Lengvari I: Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 2005, 157:157–165.CrossRefPubMed Lubics A, Reglodi D, Tamas A, Kiss P, Szalai M, Szalontay L, Lengvari I: Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 2005, 157:157–165.CrossRefPubMed
21.
go back to reference Nelson KB: The epidemiology of cerebral palsy in term infants. Ment Retard Dev Disabil Res Rev 2002, 8:146–150.CrossRefPubMed Nelson KB: The epidemiology of cerebral palsy in term infants. Ment Retard Dev Disabil Res Rev 2002, 8:146–150.CrossRefPubMed
22.
go back to reference Johnston MV, Ferriero DM, Vannucci SJ, Hagberg H: Models of cerebral palsy: which ones are best? J Child Neurol 2005, 20:984–987.CrossRefPubMed Johnston MV, Ferriero DM, Vannucci SJ, Hagberg H: Models of cerebral palsy: which ones are best? J Child Neurol 2005, 20:984–987.CrossRefPubMed
23.
go back to reference Zinkernagel AS, Johnson RS, Nizet V: Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 2007, 85:1339–1346.CrossRefPubMed Zinkernagel AS, Johnson RS, Nizet V: Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 2007, 85:1339–1346.CrossRefPubMed
24.
go back to reference Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 2003, 100:8514–8519.CrossRefPubMedPubMedCentral Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 2003, 100:8514–8519.CrossRefPubMedPubMedCentral
25.
go back to reference Chen T, Guo J, Han C, Yang M, Cao X: Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 2009, 182:1449–1459.CrossRefPubMed Chen T, Guo J, Han C, Yang M, Cao X: Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 2009, 182:1449–1459.CrossRefPubMed
26.
go back to reference Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007, 115:1599–1608.CrossRefPubMed Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007, 115:1599–1608.CrossRefPubMed
27.
go back to reference Sutterwala FS, Ogura Y, Flavell RA: The inflammasome in pathogen recognition and inflammation. J Leukoc Biol 2007, 82:259–264.CrossRefPubMed Sutterwala FS, Ogura Y, Flavell RA: The inflammasome in pathogen recognition and inflammation. J Leukoc Biol 2007, 82:259–264.CrossRefPubMed
28.
go back to reference Brough D, Tyrrell PJ, Allan SM: Regulation of interleukin-1 in acute brain injury. Trends Pharmacol Sci 2011, 32:617–622.CrossRefPubMed Brough D, Tyrrell PJ, Allan SM: Regulation of interleukin-1 in acute brain injury. Trends Pharmacol Sci 2011, 32:617–622.CrossRefPubMed
29.
go back to reference Tchelingerian JL, Le-Saux F, Jacque C: Identification and topography of neuronal cell populations expressing TNF alpha and IL-1 alpha in response to hippocampal lesion. J Neurosci Res 1996, 43:99–106.CrossRefPubMed Tchelingerian JL, Le-Saux F, Jacque C: Identification and topography of neuronal cell populations expressing TNF alpha and IL-1 alpha in response to hippocampal lesion. J Neurosci Res 1996, 43:99–106.CrossRefPubMed
30.
go back to reference Kadhim H, Tabarki B, De-Prez C, Sebire G: Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 2003, 105:209–216.PubMed Kadhim H, Tabarki B, De-Prez C, Sebire G: Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 2003, 105:209–216.PubMed
31.
go back to reference Sairanen TR, Lindsberg PJ, Brenner M, Siren AL: Global forebrain ischemia results in differential cellular expression of interleukin-1beta (IL-1beta) and its receptor at mRNA and protein level. J Cereb Blood Flow Metab 1997, 17:1107–1120.CrossRefPubMed Sairanen TR, Lindsberg PJ, Brenner M, Siren AL: Global forebrain ischemia results in differential cellular expression of interleukin-1beta (IL-1beta) and its receptor at mRNA and protein level. J Cereb Blood Flow Metab 1997, 17:1107–1120.CrossRefPubMed
32.
go back to reference Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629–640.CrossRefPubMed Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629–640.CrossRefPubMed
Metadata
Title
Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy
Authors
Alexandre Savard
Karine Lavoie
Marie-Elsa Brochu
Djordje Grbic
Martin Lepage
Denis Gris
Guillaume Sebire
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-110

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue